Template Based Shape Descriptor

We introduce a new 3D shape descriptor which maps the surface features onto an arbitrary template surface using mean-value interpolation. A compact numerical shape descriptor is extracted using manifold harmonics on the template. We show that mean-value interpolation is a strong alternative to the often used projection. The utility of using different templates is established by showing that concatenating descriptors coming from different templates improves retrieval quality.

[1]  Daniel A. Keim,et al.  Methods for similarity search on 3D databases , 2002 .

[2]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[3]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[4]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[5]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[6]  Wenyu Liu,et al.  Force Field Based Expression for 3D Shape Retrieval , 2007, HCI.

[7]  Dietmar Saupe,et al.  3D Model Retrieval with Spherical Harmonics and Moments , 2001, DAGM-Symposium.

[8]  Daniela Giorgi,et al.  Describing shapes by geometrical-topological properties of real functions , 2008, CSUR.

[9]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[10]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[11]  Petros Daras,et al.  3D Object Retrieval based on Resulting Fields , 2008 .

[12]  Daniel A. Keim,et al.  A method for similarity search of 3D objects , 2001 .

[13]  Daniela Giorgi,et al.  3D Shape Description and Matching Based on Properties of Real Functions , 2007, Eurographics.

[14]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[15]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[16]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[17]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[18]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[19]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[20]  Bülent Sankur,et al.  Multivariate Density-Based 3D Shape Descriptors , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[21]  P. Daras,et al.  Using Ellipsoidal Harmonics for 3D Shape Representation and Retrieval , 2008 .

[22]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[23]  W. J. Gordon,et al.  Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation , 1978 .

[24]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[25]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[26]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[27]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.