COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS

The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiter-family comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%–95% of the observed mid-infrared emission is produced by particles from JFCs and <10% by dust from long-period comets. The JFC particles that contribute to the observed cross section area of the zodiacal cloud are typically D ≈ 100 μm in diameter. Asteroidal dust is found to be present at <10%. We suggest that spontaneous disruptions of JFCs, rather than the usual cometary activity driven by sublimating volatiles, is the main mechanism that liberates cometary particles into the zodiacal cloud. The ejected mm to cm-sized particles, which may constitute the basic grain size in comets, are disrupted on ≲10,000 yr to produce the 10–1000 μm grains that dominate the thermal emission and mass influx. Breakup products with D > 100 μm undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting–Robertson (PR) drag. Upon reaching D < 100 μm, the particles typically drift down to <1 AU without suffering further disruptions. The resulting Earth-impact speed and direction of JFC particles is a strong function of particle size. While 300 μm to 1 mm sporadic meteoroids are still on eccentric JFC-like orbits and impact from antihelion/helion directions, which is consistent with the aperture radar observations, the 10–300 μm particles have their orbits circularized by PR drag, impact at low speeds, and are not detected by radar. Our results imply that JFC particles represent ∼85% of the total mass influx at Earth. Since their atmospheric entry speeds are typically low (≈14.5 km s−1 mean for D = 100–200 μm with ≈12 km s−1 being the most common case), many JFC grains should survive frictional heating and land on Earth's surface. This explains why most MMs collected in antarctic ice have primitive carbonaceous composition. The present mass of the inner zodiacal cloud at <5 AU is estimated to be 1–2 × 1019 g, mainly in D = 100–200 μm particles. The inner zodiacal cloud should have been >104 times brighter during the Late Heavy Bombardment (LHB) epoch ≈3.8 Gyr ago, when the outer planets scattered numerous comets into the inner solar system. The bright debris disks with a large 24 μm excess observed around mature stars may be an indication of massive cometary populations existing in those systems. We estimate that at least ∼1022, ∼2 × 1021, and ∼2 × 1020 g of primitive dark dust material could have been accreted during LHB by the Earth, Mars, and Moon, respectively.

[1]  D. Vokrouhlický,et al.  THE IRREGULAR SATELLITES: THE MOST COLLISIONALLY EVOLVED POPULATIONS IN THE SOLAR SYSTEM , 2010 .

[2]  Julio A. Fernández,et al.  On the population, physical decay and orbital distribution of Jupiter family comets: Numerical simulations , 2009 .

[3]  R. Vincent,et al.  A southern hemisphere survey of meteor shower radiants and associated stream orbits using single station radar observations , 2009 .

[4]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[5]  Robert Jedicke,et al.  On the asteroid belt's orbital and size distribution , 2009 .

[6]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[7]  D. Vokrouhlický,et al.  CHAOTIC CAPTURE OF NEPTUNE TROJANS , 2009 .

[8]  J. Vaubaillon,et al.  A dynamical model of the sporadic meteoroid complex , 2009 .

[9]  Harold F. Levison,et al.  Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans , 2009, 0903.0923.

[10]  S. Wolf,et al.  FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS , 2008, 0810.1003.

[11]  S. Charnoz,et al.  Did Saturn's rings form during the Late Heavy Bombardment? , 2008, 0809.5073.

[12]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[13]  P. Jenniskens Mostly Dormant Comets and their Disintegration into Meteoroid Streams: A Review , 2008 .

[14]  D. Vokrouhlický,et al.  Origin of the Near-Ecliptic Circumsolar Dust Band , 2008 .

[15]  Michael R. Meyer,et al.  Evolution of Mid-Infrared Excess around Sun-like Stars: Constraints on Models of Terrestrial Planet Formation , 2007, 0712.1057.

[16]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[17]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[18]  D. Vokrouhlický,et al.  Evolution of Dust Trails into Bands , 2008 .

[19]  C. Chapman,et al.  What are the real constraints on the existence and magnitude of the late heavy bombardment , 2007 .

[20]  E. Grün,et al.  Cassini/Cosmic Dust Analyzer in situ dust measurements between Jupiter and Saturn , 2007 .

[21]  W. Reach,et al.  A survey of debris trails from short-period comets , 2007, 0704.2253.

[22]  D. Vokrouhlický,et al.  Capture of Irregular Satellites during Planetary Encounters , 2007 .

[23]  J. Trigo-Rodríguez Meteor showers and their parent comets, by Peter Jenniskens , 2007 .

[24]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[25]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[26]  T. Kasuga,et al.  Pursuing a historical meteor shower , 2006 .

[27]  D. Vokrouhlický,et al.  New Candidates for Recent Asteroid Breakups , 2006 .

[28]  P. Jenniskens Meteor Showers and their Parent Comets , 2006 .

[29]  D. Jewitt,et al.  Physical Observations of 2005 UD: A Mini-Phaethon , 2006 .

[30]  M. Genge Equilibrated Ordinary Chondrite-like Micrometeorites , 2006 .

[31]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[32]  Hans Rickman,et al.  Nuclear magnitudes and the size distribution of Jupiter family comets , 2006 .

[33]  C. Burigana,et al.  Zodiacal light emission in the PLANCK mission , 2006, astro-ph/0603048.

[34]  D. Vokrouhlický,et al.  A late Miocene dust shower from the break-up of an asteroid in the main belt , 2006, Nature.

[35]  D. Vokrouhlický,et al.  Physical properties of asteroid dust bands and their sources , 2006 .

[36]  P. Ábrahám,et al.  Comets, Asteroids and Zodiacal Light as Seen by Iso , 2005 .

[37]  Paul W. Chodas,et al.  Origin of the Marsden and Kracht Groups of Sunskirting Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex , 2005 .

[38]  D. Kinoshita,et al.  2005 UD and the Daytime Sextantids , 2005 .

[39]  P. J. Francis,et al.  The Demographics of Long-Period Comets , 2005, astro-ph/0509074.

[40]  Julio A. Fernández Comets: Nature, Dynamics, Origin, and their Cosmogonical Relevance , 2005 .

[41]  P. Jenniskens,et al.  Meteor Showers from the Debris of Broken Comets: D/1819 W1 (Blanpain), 2003 WY25, and the Phoenicids , 2005 .

[42]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[43]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[44]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[45]  G. Rieke,et al.  An Excess Due to Small Grains around the Nearby K0 V Star HD 69830: Asteroid or Cometary Debris? , 2005, astro-ph/0504491.

[46]  M. Wyatt,et al.  The Insignificance of P-R drag in detectable extrasolar planetesimal belts , 2005, astro-ph/0501038.

[47]  E. Grün,et al.  The Interplanetary Dust Complex and Comets , 2005 .

[48]  P. Weissman,et al.  Oort Cloud Formation and Dynamics , 2004 .

[49]  W. Reach,et al.  Zodiacal Background: Spitzer Observations vs. DIRBE-Based Model , 2004 .

[50]  S. H. Moseley,et al.  Dynamical Zodiacal Cloud Models Constrained by High Resolution Spectroscopy of the Zodiacal Light , 2004, astro-ph/0608141.

[51]  D. Galligan,et al.  The orbital distribution of radar-detected meteoroids of the Solar system dust cloud , 2004 .

[52]  Michael A. Wilson,et al.  Meteors do not break exogenous organic molecules into high yields of diatomics. , 2004, Astrobiology.

[53]  W. Holland,et al.  The debris disc around τ Ceti: a massive analogue to the Kuiper Belt , 2004 .

[54]  R. J. Reynolds,et al.  New Measurements of the Motion of the Zodiacal Dust , 2004, astro-ph/0405529.

[55]  Paul W. Chodas,et al.  Fragmentation Hierarchy of Bright Sungrazing Comets and the Birth and Orbital Evolution of the Kreutz System. I. Two-Superfragment Model , 2004 .

[56]  P. Jenniskens 2003 EH1 Is the Quadrantid Shower Parent Comet , 2004 .

[57]  Harold F. Levison,et al.  The scattered disk as a source of Halley-type comets , 2004 .

[58]  P. Brown,et al.  Determination of the meteoroid velocity distribution at the Earth using high-gain radar , 2004 .

[59]  Markus Landgraf,et al.  The new ESA meteoroid model , 2004 .

[60]  Harold F. Levison,et al.  Recent Origin of the Solar System Dust Bands , 2003 .

[61]  Paolo Farinella,et al.  Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure , 2003 .

[62]  P. Brown,et al.  The Canadian Meteor Orbit Radar (CMOR): Early Results , 2003 .

[63]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[64]  W. Reach,et al.  The mid-infrared spectrum of the zodiacal and exozodiacal light , 2003, astro-ph/0304289.

[65]  A. Moro-martin,et al.  Dynamical Models of Kuiper Belt Dust in the Inner and Outer Solar System , 2003, astro-ph/0506703.

[66]  S. Price,et al.  Midcourse Space Experiment Mid-Infrared Measurements of the Thermal Emission from the Zodiacal Dust Cloud , 2003 .

[67]  B. Bertotti,et al.  Physics of the Solar System , 2003 .

[68]  Dale J. Fixsen,et al.  The Zodiacal Emission Spectrum as Determined by COBE and Its Implications , 2002 .

[69]  C. Lisse On the Role of Dust Mass Loss in the Evolution of Comets and Dusty Disk Systems , 2002 .

[70]  M. Landgraf,et al.  Origins of Solar System Dust beyond Jupiter , 2002, astro-ph/0201291.

[71]  B. Cooper,et al.  Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System , 2001, astro-ph/0204111.

[72]  Clark R. Chapman,et al.  Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? , 2001 .

[73]  John D. Mathews,et al.  The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates , 2001 .

[74]  John D. Mathews,et al.  Orbital Properties of the Arecibo Micrometeoroids at Earth Interception , 2001 .

[75]  S. Dermott,et al.  The Size–Frequency Distribution of the Zodiacal Cloud: Evidence from the Solar System Dust Bands , 2000, astro-ph/0005286.

[76]  J. Greenberg,et al.  Interactions with Electromagnetic Radiation: Theory and Laboratory Simulations , 2001 .

[77]  Daniel D. Durda,et al.  Orbital Evolution of Interplanetary Dust , 2001 .

[78]  Martha S. Hanner,et al.  Optical and Thermal Properties of Interplanetary Dust , 2001 .

[79]  Hakan Svedhem,et al.  In situ measurements of cosmic dust , 2001 .

[80]  Mark J. Matney,et al.  Synthesis of Observations , 2001 .

[81]  P. Jenniskens,et al.  Meteors as a Delivery Vehicle for Organic Matter to the Early Earth , 2001 .

[82]  William K. Hartmann,et al.  The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System , 2000 .

[83]  R. Siebenmorgen,et al.  Mid-infrared spectrum of the zodiacal light observed with ISOPHOT , 2002 .

[84]  T. Mukai,et al.  First Detection of Visible Zodiacal Dust Bands from Ground-based Observations , 1999 .

[85]  E. Gaidos Observational Constraints on Late Heavy Bombardment Episodes around Young Solar Analogs , 1999 .

[86]  S. Dermott,et al.  Accretion of Interplanetary Dust Particles by the Earth , 1998 .

[87]  Douglas O. ReVelle,et al.  Meteor Phenomena and Bodies , 1998 .

[88]  C. Engrand,et al.  Carbonaceous micrometeorites from Antarctica , 1998, Meteoritics & planetary science.

[89]  A. Taylor,et al.  Meteoroid orbital element distributions at 1 AU deduced from the Harvard Radio Meteor Project observations , 1998 .

[90]  E. Shoemaker,et al.  Geochemical evidence for a comet shower in the late Eocene. , 1998, Science.

[91]  David J. Gardner,et al.  Meteoroid morphology and densities: Decoding satellite impact data , 1998 .

[92]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998, astro-ph/9801023.

[93]  N. Odegard,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: I. Limits and Possible Detections , 1997 .

[94]  S. Dermott,et al.  Origin of the ten degree Solar System dust bands , 1997 .

[95]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[96]  J. Weiland,et al.  The Three-Dimensional Structure of the Zodiacal Dust Bands , 1997 .

[97]  S. Tremaine,et al.  The Evolution of Long-Period Comets , 1997, astro-ph/9705153.

[98]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[99]  R. Jehn,et al.  The meteoroid environment near Earth , 1997 .

[100]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[101]  Catherine J. Cesarsky,et al.  Mid-Infrared spectrum of the zodiacal light. , 1996 .

[102]  S. Alan Stern,et al.  On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt. , 1996 .

[103]  S. Matthews,et al.  ON THE LINE PROFILES IN THE SPECTRA OF THE ZODIACAL LIGHT , 1996 .

[104]  Stuart A. Taylor,et al.  Terrestrial Flux Rates of Micrometeorites Determined from the South Pole Water Well , 1996 .

[105]  J. Renard,et al.  Properties of interplanetary dust from infrared and optical observations. II. Brightness, polarization, temperature, albedo and their dependence on the elevation above the ecliptic. , 1995 .

[106]  G. Flynn Atmospheric Entry Heating of Large Interplanetary Dust Particles , 1995 .

[107]  A. Taylor,et al.  The Harvard Radio Meteor Project Meteor Velocity Distribution Reappraised , 1995 .

[108]  S. Dermott,et al.  Rotational Asymmetry of the Zodiacal Cloud , 1995 .

[109]  S. Dermott,et al.  The contribution of cometary dust to the zodiacal cloud , 1995 .

[110]  E. L. Wright,et al.  Observational confirmation of a circumsolar dust ring by the COBE satellite , 1995, Nature.

[111]  D. Brownlee,et al.  Densities of Stratospheric Micrometeorites , 1994 .

[112]  S. Dermott,et al.  A circumsolar ring of asteroidal dust in resonant lock with the Earth , 1994, Nature.

[113]  S. Dermott,et al.  Zodiacal Dust Bands , 1994 .

[114]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[115]  Karri Muinonen,et al.  A Public-Domain Asteroid Orbit Database , 1994 .

[116]  S. Dermott,et al.  The Collisional Evolution of the Asteroid Belt and Its Contribution to the Zodiacal Cloud , 1997 .

[117]  P. Brown,et al.  Sporadic meteor radiant distributions: orbital survey results , 1993 .

[118]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[119]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[120]  Neil Divine,et al.  Five populations of interplanetary meteoroids , 1993 .

[121]  D. Jewitt,et al.  On the rate at which comets split , 1993 .

[122]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[123]  T. Mukai,et al.  Analysis of Doppler shifts in the zodiacal light , 1993 .

[124]  H. Zook Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF) , 1992 .

[125]  S. Dermott,et al.  The origin and evolution of the zodiacal dust cloud , 1992 .

[126]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[127]  A. Levasseur-Regourd,et al.  Origin and Evolution of Interplanetary Dust , 1991 .

[128]  I. Mann,et al.  Spatial Distribution and Orbital Properties of Zodiacal Dust , 1991 .

[129]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[130]  Mark V. Sykes,et al.  Zodiacal dust bands - Their relation to asteroid families , 1989 .

[131]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[132]  M. Schidlowski A 3,800-million-year isotopic record of life from carbon in sedimentary rocks , 1988, Nature.

[133]  A. Levasseur-Regourd,et al.  Properties of interplanetary dust from infrared and optical observations. I - Temperature, global volume intensity, albedo and their heliocentric gradients , 1988 .

[134]  S. Dermott,et al.  The impact of IRAS on asteroidal science , 1988 .

[135]  A. Lawrence Comets to Cosmology , 1988 .

[136]  D. Beard,et al.  Doppler shifts in zodiacal light , 1987 .

[137]  J. Good,et al.  IRAS observations of the zodiacal background , 1986 .

[138]  R. Greenberg,et al.  The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids , 1986 .

[139]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[140]  S. Hong Henyey-Greenstein representation of the mean volume scattering phase function for zodiacal dust , 1985 .

[141]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[142]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[143]  H. Aumann,et al.  IRAS OBSERVATIONS OF THE DIFFUSE INFRARED BACKGROUND , 1984 .

[144]  Stanley M. Awramik,et al.  Filamentous fossil bacteria from the Archean of Western Australia , 1983 .

[145]  S. Roser,et al.  How to maintain the spatial distribution of interplanetary dust , 1983 .

[146]  Donald J. Kessler,et al.  Derivation of the collision probability between orbiting objects: the lifetimes of jupiter's outer moons , 1981 .

[147]  Paul R. Weissman,et al.  Physical loss of long-period comets , 1980 .

[148]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[149]  W. R. Schmus Annual review of earth and planetary sciences , 1975 .

[150]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[151]  G. W. Wetherill,et al.  Collisions in the asteroid belt , 1967 .

[152]  F. Whipple,et al.  Precision orbits of 413 photographic meteors , 1961 .