Local-meta-model CMA-ES for partially separable functions

In this paper, we propose a new variant of the covariance matrix adaptation evolution strategy with local meta-models (lmm-CMA) for optimizing partially separable functions. We propose to exploit partial separability by building at each iteration a meta-model for each element function (or sub-function) using a full quadratic local model. After introducing the approach we present some first experiments using element functions with dimensions 2 and 4. Our results demonstrate that, as expected, exploiting partial separability leads to an important speedup compared to the standard CMA-ES. We show on the tested functions that the speedup increases with increasing dimensions for a fixed dimension of the element function. On the standard Rosenbrock function the maximum speedup of λ is reached in dimension 40 using element functions of dimension 2. We show also that higher speedups can be achieved by increasing the population size. The choice of the number of points used to build the meta-model is also described and the computational cost is discussed.

[1]  Jorge J. Moré,et al.  Impact of Partial Separability on Large-Scale Optimization , 1997, Comput. Optim. Appl..

[2]  Philippe L. Toint,et al.  Optimizing partially separable functions without derivatives , 2005, Optim. Methods Softw..

[3]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[4]  Jorge Nocedal,et al.  Large Scale Unconstrained Optimization , 1997 .

[5]  Petros Koumoutsakos,et al.  Local Meta-models for Optimization Using Evolution Strategies , 2006, PPSN.

[6]  A. Auger,et al.  Partially Separated Meta-models with Evolution Strategies for Well Placement Optimization , 2011 .

[7]  Anne Auger,et al.  Investigating the Local-Meta-Model CMA-ES for Large Population Sizes , 2010, EvoApplications.

[8]  Nikolaus Hansen,et al.  Adaptive Encoding: How to Render Search Coordinate System Invariant , 2008, PPSN.

[9]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[10]  Michèle Sebag,et al.  Comparison-Based Optimizers Need Comparison-Based Surrogates , 2010, PPSN.

[11]  Nicolas Durand,et al.  Genetic crossover operator for partially separable functions , 1998 .

[12]  Raymond Ros,et al.  A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.

[13]  Yu Didier Ding,et al.  Using partial separability of the objective function for gradient-based optimizations in history matching , 2011, ANSS 2011.

[14]  Anne Auger,et al.  Using Evolution Strategy with Meta-models for Well Placement Optimization , 2010, ArXiv.

[15]  I. Duff,et al.  The state of the art in numerical analysis , 1997 .

[16]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.