Periodicity in a Nonlinear Predator-prey System with State Dependent Delays

AbstractWith the help of a continuation theorem based on Gaines and Mawhin’s coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system $$ \left\{ {\begin{array}{*{20}c} {\frac{{dN_{1} {\left( t \right)}}} {{dt}} = N_{1} {\left( t \right)}\left[ {b_{1} {\left( t \right)} - {\sum\limits_{i = 1}^n {a_{i} {\left( t \right)}{\left( {N_{1} {\left( {t - \tau _{i} {\left( {t,N_{1} {\left( t \right)},N_{2} {\left( t \right)}} \right)}} \right)}} \right)}^{{\alpha _{i} }} } }} \right.} \\ {\;\left. { - {\sum\limits_{j = 1}^m {c_{j} {\left( t \right)}{\left( {N_{2} {\left( {t - \sigma _{j} {\left( {t,N_{1} {\left( t \right)},N_{2} {\left( t \right)}} \right)}} \right)}} \right)}^{{\beta _{j} }} } }} \right]} \\ {\frac{{dN_{2} {\left( t \right)}}} {{dt}} = N_{2} {\left( t \right)}{\left[ { - b_{2} {\left( t \right)} + {\sum\limits_{i = 1}^n {d_{i} {\left( t \right)}{\left( {N_{1} {\left( {t - \rho _{i} {\left( {t,N_{1} {\left( t \right)},N_{2} {\left( t \right)}} \right)}} \right)}} \right)}^{{\gamma _{i} }} } }} \right]},} \\ \end{array} } \right. $$, where ai(t), cj (t), di(t) are continuous positive periodic functions with periodic ω > 0, b1(t), b2(t) are continuous periodic functions with periodic ω and $$ {\int_o^\omega {b_{i} {\left( t \right)}dt > 0,\tau _{i} \sigma _{j} ,\rho _{i} {\left( {i = 1,2,...,n,j = 1,2,...,m} \right)}} } $$ are positive constants.

[1]  Li Yongkun,et al.  PERIODIC SOLUTIONS OF A PERIODIC DELAY PREDATOR-PREY SYSTEM , 1999 .

[2]  Jinlin Shi,et al.  Periodicity in a food-limited population model with toxicants and state dependent delays☆ , 2003 .

[3]  Yang Kuang,et al.  Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems☆ , 2001 .

[4]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[5]  Shi Jin-lin On the Periodic Solution of Higher Dimensional Nonautonomous Systems , 2000 .

[6]  Jianhong Wu,et al.  Periodic solutions of single-species models with periodic delay , 1992 .

[7]  Jinlin Shi,et al.  Periodicity in a logistic type system with several delays , 2004 .

[8]  Chen Xiao-xing The n-Competing Volterra-Lotka Almost Periodic Systems with Grazing Rates , 2003 .

[9]  Guihong Fan Existence of positive periodic solution for a single species model with state dependent delay , 2002 .

[10]  Ke Wang,et al.  Global periodic solutions of a generalized n-species Gilpin-Ayala competition model☆ , 2000 .

[11]  Jiandong Zhao,et al.  The qualitative analysis of N-species nonlinear prey-competition systems , 2004, Appl. Math. Comput..

[12]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[13]  Yongkun Li,et al.  Periodic Solutions for Delay Lotka–Volterra Competition Systems , 2000 .

[14]  M. Fan,et al.  GLOBAL EXISTENCE OF POSITIVE PERIODIC SOLUTION OF PREDATOR-PREY SYSTEM WITH DEVIATING ARGUMENTS , 2000 .

[15]  Zhidong Teng,et al.  Nonautonomous Lotka–Volterra Systems with Delays , 2002 .

[16]  Zhicheng Wang,et al.  Periodic solutions for nonautonomous predator-prey system with diffusion and time delay , 2001 .

[17]  Xiaoxin Chen,et al.  Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control , 2004, Appl. Math. Comput..

[18]  Wan-Tong Li,et al.  Existence and global stability of positive periodic solutions of a predator-prey system with delays , 2003, Appl. Math. Comput..

[19]  Jim M Cushing,et al.  Periodic Time-Dependent Predator-Prey Systems , 1977 .