Constrained Image Deblurring with Sparse Proximal Newton Splitting Method

This chapter proposes a framework of sparse proximal Newton splitting method for constrained image deblurring. This framework can be viewed as a generalization of proximal splitting method, which provides a common update strategy by exploiting second derivative information. This is achieved through utilizing the sparse pattern of inverse Hessian matrix. To alleviate the difficulties of the weighted least squares problem, an approximate solution is derived. Some theoretical aspects related to the proposed method are also discussed. Numerical experiments on various blurring conditions demonstrate the advantage of the proposed method in comparison to other iterative shrinkage-thresholding algorithms.

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[3]  Mohamed-Jalal Fadili,et al.  A quasi-Newton proximal splitting method , 2012, NIPS.

[4]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[5]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[6]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[7]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[8]  Ramesh Raskar,et al.  Coded exposure photography: motion deblurring using fluttered shutter , 2006, SIGGRAPH 2006.

[9]  Junzhou Huang,et al.  Fast Optimization for Mixture Prior Models , 2010, ECCV.

[10]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[11]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[12]  Dimitri P. Bertsekas,et al.  Convex Optimization Theory , 2009 .

[13]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  S. B. Kang,et al.  Image deblurring using inertial measurement sensors , 2010, SIGGRAPH 2010.

[16]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[17]  Bangti Jin,et al.  A duality-based splitting method for ` 1-TV image restoration with automatic regularization parameter choice ∗ , 2009 .

[18]  Kazuyuki Aihara,et al.  Classifying matrices with a spectral regularization , 2007, ICML '07.

[19]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[20]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[21]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[22]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[23]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[24]  Michael A. Saunders,et al.  Proximal Newton-type Methods for Minimizing Convex Objective Functions in Composite Form , 2012, NIPS 2012.

[25]  Hans-Peter Seidel,et al.  Video quality assessment for computer graphics applications , 2010, SIGGRAPH 2010.

[26]  Zhongliang Jing,et al.  A sparse proximal Newton splitting method for constrained image deblurring , 2013, Neurocomputing.

[27]  Stephen J. Wright,et al.  Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..

[28]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[29]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[30]  Shiqian Ma,et al.  Fast Multiple-Splitting Algorithms for Convex Optimization , 2009, SIAM J. Optim..

[31]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[32]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.