Rapidly expanding knowledge on the role of the gut microbiome in health and disease.

The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our "other genome" could play an important role in immune-related, complex diseases, and growing evidence supports a causal role for gut microbiota in regulating predisposition to diseases. A comprehensive analysis of the human gut microbiome is thus important to unravel the exact mechanisms by which the gut microbiota are involved in health and disease. Recent advances in next-generation sequencing technology, along with the development of metagenomics and bioinformatics tools, have provided opportunities to characterize the microbial communities. Furthermore, studies using germ-free animals have shed light on how the gut microbiota are involved in autoimmunity. In this review we describe the different approaches used to characterize the human microbiome, review current knowledge about the gut microbiome, and discuss the role of gut microbiota in immune homeostasis and autoimmunity. Finally, we indicate how this knowledge could be used to improve human health by manipulating the gut microbiota. This article is part of a Special Issue entitled: From Genome to Function.

[1]  S. Pettersson,et al.  Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA , 2004, Nature Immunology.

[2]  M. Kleerebezem,et al.  Omics approaches to study host-microbiota interactions. , 2013, Current opinion in microbiology.

[3]  P. Rosenstiel,et al.  Nod2 is essential for temporal development of intestinal microbial communities , 2011, Gut.

[4]  Ruth Ann Luna,et al.  Metagenomic pyrosequencing and microbial identification. , 2009, Clinical chemistry.

[5]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Caspar Zialor DNA sequencing with chain terminating inhibitors , 2014 .

[7]  Philip Rosenstiel,et al.  NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. , 2013, The Journal of clinical investigation.

[8]  Kenneth A. Khoury,et al.  SMALL INTESTINAL MUCOSAL CELL PROLIFERATION AND BACTERIAL FLORA IN THE CONVENTIONALIZATION OF THE GERMFREE MOUSE , 1969, The Journal of experimental medicine.

[9]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[10]  S. Abramson,et al.  Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity , 2014, Current opinion in rheumatology.

[11]  L. Joosten,et al.  Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. , 2008, The Journal of clinical investigation.

[12]  C. Huttenhower,et al.  Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis , 2013, eLife.

[13]  Richard A. Flavell,et al.  Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity , 2012, Nature.

[14]  Horacio Jaoquin Perez,et al.  [Intestinal microbiota]. , 2014, Acta gastroenterologica Latinoamericana.

[15]  T. Borody,et al.  Fecal microbiota transplantation: techniques, applications, and issues. , 2012, Gastroenterology clinics of North America.

[16]  Leah M. Feazel,et al.  Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity , 2013, Science.

[17]  N. Serrano,et al.  Non-HLA associations with autoimmune diseases. , 2006, Autoimmunity reviews.

[18]  Michael D. George,et al.  Inflammation Anergy in Human Intestinal Macrophages Is Due to Smad-induced IκBα Expression and NF-κB Inactivation , 2010, The Journal of Biological Chemistry.

[19]  L. Proctor,et al.  The Human Microbiome Project in 2011 and beyond. , 2011, Cell host & microbe.

[20]  M. Hausmann,et al.  Isolation and phenotypic characterization of colonic macrophages , 1998, Clinical and experimental immunology.

[21]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[22]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[23]  J. Gordon,et al.  How host-microbial interactions shape the nutrient environment of the mammalian intestine. , 2002, Annual review of nutrition.

[24]  J Lederberg,et al.  Infectious History , 2000, Science.

[25]  F. Bushman,et al.  Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis , 2013, Nature Medicine.

[26]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[27]  Miguel Pignatelli,et al.  Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota , 2011, PloS one.

[28]  M. Nordberg,et al.  Phagocytosis , 1892, The Hospital.

[29]  Peer Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[30]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[31]  L. Brandt,et al.  Fecal microbiota transplantation: past, present and future , 2013, Current opinion in gastroenterology.

[32]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[33]  J. Bach,et al.  The effect of infections on susceptibility to autoimmune and allergic diseases. , 2002, The New England journal of medicine.

[34]  W. D. de Vos,et al.  Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults , 2009, Environmental microbiology.

[35]  M. Weichenthal,et al.  Reduced Paneth cell alpha-defensins in ileal Crohn's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. McKenzie,et al.  Innate lymphoid cells — how did we miss them? , 2013, Nature Reviews Immunology.

[37]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[38]  J. Pleasants REARING GERMFREE CESAREAN‐BORN RATS, MICE, AND RABBITS THROUGH WEANING * , 1959, Annals of the New York Academy of Sciences.

[39]  G. Eberl,et al.  Development and function of intestinal innate lymphoid cells. , 2012, Current opinion in immunology.

[40]  Lior Pachter,et al.  Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial Communities , 2005, PLoS Comput. Biol..

[41]  M Schwab,et al.  NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression , 2004, Gut.

[42]  N. El Borai,et al.  Peripheral Blood Neutrophils of Germ‐Free Rats Modified by In Vivo Granulocyte–Colony‐Stimulating Factor and Exposure to Natural Environment , 1999, Scandinavian journal of immunology.

[43]  J. Doré,et al.  Low counts of Faecalibacterium prausnitzii in colitis microbiota , 2009, Inflammatory bowel diseases.

[44]  Fredrik H. Karlsson,et al.  Symptomatic atherosclerosis is associated with an altered gut metagenome , 2012, Nature Communications.

[45]  Philip Rosenstiel,et al.  Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype , 2011, Proceedings of the National Academy of Sciences.

[46]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[47]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[48]  J. Kearney,et al.  Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. , 1997, Journal of immunological methods.

[49]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[50]  Matthias Meyer,et al.  Illumina sequencing library preparation for highly multiplexed target capture and sequencing. , 2010, Cold Spring Harbor protocols.

[51]  D. Foureau,et al.  Role of Gut Commensal Microflora in the Development of Experimental Autoimmune Encephalomyelitis1 , 2009, The Journal of Immunology.

[52]  D. Artis,et al.  Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. , 2012, Immunity.

[53]  M. McFall-Ngai Adaptive Immunity: Care for the community , 2007, Nature.

[54]  J. Jansson,et al.  Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea , 2009, Journal of clinical gastroenterology.

[55]  U. Hofer Viral evolution: Variation in the gut virome , 2013, Nature Reviews Microbiology.

[56]  R. Ley,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2010, Science.

[57]  Judy H. Cho,et al.  [Letters to Nature] , 1975, Nature.

[58]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[59]  M. Tsuda,et al.  Impaired superoxide production in peripheral blood neutrophils of germ-free rats. , 1990, Scandinavian journal of immunology.

[60]  T. Chatila,et al.  The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011, Science.

[61]  J. Neu,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2011 .

[62]  Maria Karlsson,et al.  Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. , 2010, Cell host & microbe.

[63]  N. Salzman,et al.  Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis , 2011, Nature Reviews Microbiology.

[64]  F. Shanahan,et al.  The gut flora as a forgotten organ , 2006, EMBO reports.

[65]  Willem M. de Vos,et al.  Genomics: A gut prediction , 2013, Nature.

[66]  C. Goodnow,et al.  Cellular and genetic mechanisms of self tolerance and autoimmunity , 2005, Nature.

[67]  H. Clevers,et al.  Paneth cells , 2014, Current Biology.

[68]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[69]  F. Liew,et al.  Negative regulation of Toll-like receptor-mediated immune responses , 2005, Nature Reviews Immunology.

[70]  L. Meza-Zepeda,et al.  Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression , 2011, PloS one.

[71]  J. Orenstein,et al.  Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. , 2005, The Journal of clinical investigation.

[72]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[73]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[74]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[75]  P. Pavli,et al.  Evidence for a CD14+ population of monocytes in inflammatory bowel disease mucosa—implications for pathogenesis , 1995, Clinical and experimental immunology.

[76]  L. Šver,et al.  Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs. , 2007, Veterinary immunology and immunopathology.

[77]  M. Hattori,et al.  Bifidobacteria can protect from enteropathogenic infection through production of acetate , 2011, Nature.

[78]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[79]  A. Green,et al.  Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins , 1995, BMJ.

[80]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[81]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[82]  P. Turnbaugh,et al.  Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics , 2014, Gut microbes.

[83]  Adam Godzik,et al.  Shotgun metaproteomics of the human distal gut microbiota , 2008, The ISME Journal.

[84]  R. P. Ross,et al.  Intestinal microbiota, diet and health , 2013, British Journal of Nutrition.

[85]  E. Zoetendal,et al.  High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota , 2008, Gut.

[86]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[87]  Judy H. Cho,et al.  The genetics and immunopathogenesis of inflammatory bowel disease , 2008, Nature Reviews Immunology.

[88]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[89]  S. Targan,et al.  Fucosyltransferase 2 ( FUT 2 ) non-secretor status is associated with Crohn ’ s disease , 2010 .

[90]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[91]  M. Weichenthal,et al.  Reduced Paneth cell α-defensins in ileal Crohn's disease , 2005 .

[92]  W. Weichert,et al.  Fungi and inflammatory bowel diseases: Alterations of composition and diversity , 2008, Scandinavian journal of gastroenterology.

[93]  Anders F. Andersson,et al.  Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section , 2013, Gut.

[94]  L. Fulton,et al.  Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. , 2008, Cell host & microbe.

[95]  Matthew J. Gebert,et al.  Alterations in the gut microbiota associated with HIV-1 infection. , 2013, Cell host & microbe.

[96]  Elodie Ghedin,et al.  The human mycobiome in health and disease , 2013, Genome Medicine.

[97]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[98]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[99]  J. Gibrat,et al.  The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[100]  M. Russell,et al.  Intestinal Macrophages Lack CD14 and CD89 and Consequently Are Down-Regulated for LPS- and IgA-Mediated Activities1 , 2001, The Journal of Immunology.

[101]  P. Toivanen,et al.  Fecal microbiota in early rheumatoid arthritis. , 2008, The Journal of rheumatology.

[102]  Jose U. Scher,et al.  The microbiome and rheumatoid arthritis , 2011, Nature Reviews Rheumatology.

[103]  K. McCoy,et al.  Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. , 2007, Seminars in immunology.

[104]  T. Midtvedt,et al.  Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice , 1984, Infection and immunity.

[105]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[106]  A. Bressan,et al.  Ultrastructural detection of an unusual intranuclear bacterium in Pentastiridius leporinus (Hemiptera: Cixiidae). , 2008, Journal of invertebrate pathology.

[107]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[108]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[109]  J. Ochoa-Repáraz,et al.  Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora , 2010, Gut microbes.

[110]  Sang-Uk Seo,et al.  Role of the gut microbiota in immunity and inflammatory disease , 2013, Nature Reviews Immunology.

[111]  Harry Sokol,et al.  Analysis of bacterial bowel communities of IBD patients: What has it revealed? , 2008, Inflammatory bowel diseases.

[112]  Jan Verhaegen,et al.  A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis , 2013, Gut.

[113]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[114]  Tomas Hrncir,et al.  Nod2 is required for the regulation of commensal microbiota in the intestine , 2009, Proceedings of the National Academy of Sciences.

[115]  Dror Berel,et al.  Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. , 2010, Human molecular genetics.

[116]  S. Foster,et al.  Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 , 2003, The Journal of Biological Chemistry.

[117]  H. Mikkelsen,et al.  Macrophages in the Small Intestinal Muscularis Externa of Embryos, Newborn and Adult Germ-Free Mice , 2003, Journal of Molecular Histology.

[118]  Se Jin Song,et al.  The treatment-naive microbiome in new-onset Crohn's disease. , 2014, Cell host & microbe.

[119]  Martín Rodríguez,et al.  Fecal Microbiota Therapy for Recurrent Clostridium difficile Infection in HIV-Infected Persons , 2013, Annals of Internal Medicine.

[120]  F. Sanger,et al.  A Rapid Method for Determining Sequences in DNA by Primed Synthesis with DNA Polymerase , 1989 .

[121]  Philippe Marteau,et al.  Specificities of the fecal microbiota in inflammatory bowel disease , 2006, Inflammatory bowel diseases.

[122]  R. Xavier,et al.  Genetics and pathogenesis of inflammatory bowel disease , 2011, Nature.

[123]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[124]  P. Rosenstiel,et al.  NOD 2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer , 2013 .

[125]  G. Weinstock,et al.  Emerging view of the human virome , 2012, Translational Research.

[126]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[127]  S. Mazmanian,et al.  Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis , 2010, Proceedings of the National Academy of Sciences.

[128]  I. Wilson,et al.  Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. , 2007, Journal of proteome research.

[129]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[130]  C. Manichanh,et al.  Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach , 2005, Gut.

[131]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[132]  M. Dubinsky,et al.  Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis , 2012, Science.

[133]  Y. Belkaid,et al.  Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis , 2014, Science.

[134]  C. Huttenhower,et al.  Skin Microbiome Imbalance in Patients with STAT1/STAT3 Defects Impairs Innate Host Defense Responses , 2013, Journal of Innate Immunity.

[135]  Shinichiro Sawa,et al.  Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. , 2008, Immunity.

[136]  C. Klein,et al.  Breakdown of T cell tolerance and autoimmunity in primary immunodeficiency--lessons learned from monogenic disorders in mice and men. , 2008, Current opinion in immunology.

[137]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[138]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[139]  J. Clemente,et al.  Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice , 2013, Science.

[140]  Mirian Ueno,et al.  Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice , 2011, PLoS biology.

[141]  V. Tremaroli,et al.  Functional interactions between the gut microbiota and host metabolism , 2012, Nature.

[142]  Timothy L. Tickle,et al.  Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment , 2012, Genome Biology.

[143]  A. Velcich,et al.  Importance and regulation of the colonic mucus barrier in a mouse model of colitis. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[144]  K. Zimmermann,et al.  A vegan or vegetarian diet substantially alters the human colonic faecal microbiota , 2012, European Journal of Clinical Nutrition.

[145]  Max Nieuwdorp,et al.  Therapeutic potential of fecal microbiota transplantation. , 2013, Gastroenterology.

[146]  Christophe Benoist,et al.  Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. , 2010, Immunity.

[147]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[148]  Christopher S. J. Probert,et al.  Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse , 2006, Immunology.

[149]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[150]  S. Salminen,et al.  Early differences in fecal microbiota composition in children may predict overweight. , 2008, The American journal of clinical nutrition.

[151]  Joseph Rafter,et al.  The impact of Crohn's disease genes on healthy human gut microbiota: a pilot study , 2013, Gut.

[152]  J. Handelsman,et al.  Metagenomics: genomic analysis of microbial communities. , 2004, Annual review of genetics.

[153]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[154]  J. Stockman,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2012 .