A wideband CMOS sigma-delta modulator with incremental data weighted averaging

A low-complexity high-speed circuit is proposed for the implementation of an incremental data weighted averaging (IDWA) technique used for reducing digital-to-analog converter (DAC) noise due to component mismatches. IDWA can achieve very good performance even when it is used with a low oversampling ratio (OSR), which reduces demands on circuit speed and power consumption. Therefore, the IDWA is highly suitable for wideband, low-power and small-area sigma-delta modulator (SDM) implementation. Incorporating the IDWA technique, a fourth-order feedforward (FF) SDM with an OSR of 12 and a 4-bit internal quantizer is implemented with a 2.5-V 0.25-/spl mu/m CMOS process. Measurement results show that the SDM operating from a 2.5-V supply voltage can achieve respective dynamic ranges (DRs) of 84/80 dB and spurious-free dynamic ranges (SFDRs) of 90/85 dB with signal bandwidths of 1.25/2 MHz at sampling frequencies of 30/48 MHz. The power dissipation is less than 105 mW and the active area is 2.6 mm/sup 2/. Wider bandwidth, lower OSR, less power, and lower supply voltage are achieved compared with two recently published 3.3-V/3-V CMOS wideband SDMs with comparable SNDR performance.