Determination of the electrical conductivity of carbon/carbon at high microwave frequencies

Abstract We present an accurate measurement of the electrical conductivity of carbon/carbon (C/C) composites in higher range of microwave frequencies. The composite is an 8 mm thick C/C laminate 2D woven fabric, machined to create a rectangular waveguide. Transmission and reflection parameters are acquired within a broad frequency band, ranging from 23 to 30 GHz, and used for the evaluation of the power loss in the waveguide and to extract the C/C electrical conductivity. The obtained conductivity values at microwave frequencies are about 10 times lower than those measured at very low frequencies. The effects of temperature are also investigated, and the variation of the conductivity with the temperature is reported.

[1]  F. Moglie,et al.  Broadband Electromagnetic Absorbers Using Carbon Nanostructure-Based Composites , 2011, IEEE Transactions on Microwave Theory and Techniques.

[2]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[3]  D. Chung,et al.  Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites , 1999 .

[4]  Dan D. Edie,et al.  Carbon-Carbon Materials and Composites , 1994 .

[5]  W. Elkman,et al.  EMI/EMC, lightning, radiation shielding verification approach for the Dragon COTS spacecraft: Part II , 2011, 2011 IEEE International Symposium on Electromagnetic Compatibility.

[6]  Antonio Macías-García,et al.  Electrical conductivity of carbon blacks under compression , 2005 .

[7]  W. Elkman,et al.  EMI/EMC, lightning, radiation shielding design approach for the Dragon COTS spacecraft: Part I , 2011, 2011 IEEE International Symposium on Electromagnetic Compatibility.

[8]  R. J. Diefendorf,et al.  High‐performance carbon fibers , 1975 .

[9]  G. Lu,et al.  Specific anion and cation capacitance in porous carbon blacks , 2010 .

[10]  James E. Atwater,et al.  Complex permittivities and dielectric relaxation of granular activated carbons at microwave frequencies between 0.2 and 26 GHz , 2003 .

[11]  M. Fang,et al.  Microstructure and electrical resistivity of carbon/carbon composites prepared by thermal gradient chemical vapor infiltration , 2012 .

[12]  F. Moglie,et al.  Optimization of Multilayer Shields Made of Composite Nanostructured Materials , 2012, IEEE Transactions on Electromagnetic Compatibility.

[13]  R. Young,et al.  Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres , 1995 .

[14]  W. Elkman,et al.  EMI/EMC, lightning, and ESD design approach for the Falcon 9 launch vehicle: Part I , 2011, 2011 IEEE International Symposium on Electromagnetic Compatibility.

[15]  T. Tritt,et al.  Electronic transport properties of highly conducting vapor-grown carbon fiber composites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[16]  R. Luo,et al.  A multi-wall carbon nanotube-reinforced high-temperature resistant adhesive for bonding carbon/carbon composites , 2012 .

[17]  G. Savage Carbon-carbon composites , 1993 .

[18]  P. Mallick Fiber-reinforced composites : materials, manufacturing, and design , 1989 .

[19]  D. Sathiyamoorthy,et al.  Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites , 2006 .

[20]  Fabrication and electrical conductivity of suspended carbon nanofiber arrays , 2011 .

[21]  Microwave transmission through high-temperature superconducting waveguides , 2002 .

[22]  François Béguin,et al.  High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte , 2010 .

[23]  Hejun Li,et al.  Densification behavior and microstructure of carbon/carbon composites prepared by chemical vapor infiltration from xylene at temperatures between 900 and 1250 °C , 2011 .

[24]  Zhang-zhong Wang,et al.  Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry , 2010 .

[25]  W. Elkman,et al.  EMI/EMC, lightning, and ESD verification approach for the Falcon 9 launch vehicle: Part II , 2011, 2011 IEEE International Symposium on Electromagnetic Compatibility.

[26]  Franco Moglie,et al.  Electromagnetic shielding performance of carbon foams , 2012 .

[27]  R. Pailler,et al.  Thermal properties of carbon fibers at very high temperature , 2009 .

[28]  Ruiying Luo,et al.  Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity , 2004 .

[29]  J. Gaier,et al.  EMI Shields made from intercalated graphite composites , 1995 .

[30]  Lalit M. Manocha,et al.  Carbon reinforcements and carbon /carbon composites , 1998 .

[31]  Y. Dimitrienko Modelling of carbon–carbon composite manufacturing processes , 1999 .

[32]  G. H. Bryant Principles of Microwave Measurements , 1993 .

[33]  Qinjun Kang,et al.  Thermal conductivity enhancement of carbon fiber composites , 2009 .

[34]  P. Somlo,et al.  On the TE/sub 10/-mode cutoff frequency in lossy-walled rectangular waveguides , 1996 .

[35]  Hejun Li,et al.  Microstructures and mechanical properties of carbon/carbon composites reinforced with carbon nanofibers/nanotubes produced in situ , 2007 .

[36]  Y. Dimitrienko,et al.  Thermomechanics of Composites under High Temperatures , 1998 .

[37]  K. A. Trick,et al.  Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite , 1995 .