A Burn-In Scheme Based on Percentiles of the Residual Life

Many commercial products sold with warranties suffer from infant-mortality problems. Burn-in is a common means to mitigate the impact of early failures on warranty costs. After burn-in, the p-percentile function of the residual life (PRL-p function) is of particular interest as, in some cases, there exists a change point at which the PRL-p function reaches a maximum value. When the failure probability during the warranty period is prespecified, this change point naturally gives rise to an optimal burn-in duration. Moreover, the maximal PRL-p represents the maximum allowable warranty period when the expected field return is set at p. We present some properties of this change point, and derive the asymptotic distribution of its parametric maximum likelihood estimator and that of the corresponding PRL-p. The procedure is then applied to estimate a set of desirable burn-in durations and the corresponding warranty periods when life-test data are available. An example using the modified Weibull extension model is given to illustrate the procedure.

[1]  Kyungmee O. Kim,et al.  Optimal burn-in for maximizing reliability of repairable non-series systems , 2009, Eur. J. Oper. Res..

[2]  Kwei Tang,et al.  Burn‐in Time and Estimation of Change‐Point with Weibull‐Exponential Mixture Distribution* , 1992 .

[3]  David W. Coit,et al.  Genetic algorithm to maximize a lower-bound for system time-to-failure with uncertain component Weibull parameters , 2002 .

[4]  Yanyuan Ma,et al.  Semiparametric median residual life model and inference , 2010 .

[5]  Moshe Shaked,et al.  Percentile residual life orders , 2011 .

[6]  Thong Ngee Goh,et al.  Statistical Analysis of a Weibull Extension Model , 2003 .

[7]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[8]  B. Lindsay,et al.  On second-order optimality of the observed Fisher information , 1997 .

[9]  Lee J. Bain,et al.  An exponential power life-testing distribution , 1975 .

[10]  Miklós Csörgo,et al.  Estimation of Percentile Residual Life , 1987, Oper. Res..

[11]  Shey-Huei Sheu,et al.  Optimal burn-in time to minimize the cost for general repairable products sold under warranty , 2005, Eur. J. Oper. Res..

[12]  Jie Mi,et al.  Comparisons of renewable warranties , 1999 .

[13]  Kyungmee O. Kim,et al.  Percentile Life and Reliability As Performance Measures in Optimal System Design , 2003 .

[14]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[15]  Thong Ngee Goh,et al.  A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..

[16]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[17]  Zhenmin Chen A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function , 2000 .

[18]  Jie Mi,et al.  Warranty policies and burn-in , 1997 .

[19]  Jie Mi Maximization of a survival probability and its application , 1994 .

[20]  Chin-Diew Lai,et al.  Estimating the turning point of a bathtub-shaped failure distribution , 2008 .

[21]  Chikong Huang,et al.  Optimal burn-in time and warranty length under fully renewing combination free replacement and pro-rata warranty , 2007, Reliab. Eng. Syst. Saf..

[22]  M. Nikulin,et al.  Accelerated Life Models: Modeling and Statistical Analysis , 2001 .

[23]  Sin-Ho Jung,et al.  Nonparametric Inference on Median Residual Life Function , 2008, Biometrics.

[24]  Debasis Kundu,et al.  Generalized exponential distribution: different method of estimations , 2001 .

[25]  R. L. Launer,et al.  Graphical techniques for analyzing failure data with the percentile residual-life function , 1993 .

[26]  Harry Joe,et al.  Percentile Residual Life Functions , 1984, Oper. Res..

[27]  Hisashi Yamamoto,et al.  Optimal Burn-in for Minimizing Total Warranty Cost , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[28]  Sin-Ho Jung,et al.  Regression on Quantile Residual Life , 2009, Biometrics.

[29]  Henry W. Block,et al.  BATHTUB FUNCTIONS AND BURN-IN , 1999 .

[30]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[31]  Hoang Pham,et al.  On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.