Influence of a flame-retardant on the fire-behaviour and the residual mechanical properties of C/PEKK composite laminates exposed to a kerosene flame

[1]  Pingan Song,et al.  Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates , 2021 .

[2]  M. Lévesque,et al.  Modeling the thermal decomposition and residual mass of a carbon fiber epoxy matrix composite with a phenomenological approach: Effect of the reaction scheme , 2021, Fire and Materials.

[3]  M. Lévesque,et al.  Multi-physics modeling of the ignition of polymer matrix composites exposed to fire , 2021 .

[4]  A. Coppalle,et al.  Experimental investigation of a low Reynolds number flame jet impinging flat plates , 2020 .

[5]  Yousof M. Ghazzawi,et al.  The effect of fibre length and fibre type on the fire performance of thermoplastic composites: The behaviour of polycarbonate as an example of a charring matrix , 2020 .

[6]  F. Barbe,et al.  About the tensile mechanical behaviour of carbon fibers fabrics reinforced thermoplastic composites under very high temperature conditions , 2020 .

[7]  N. Delpouve,et al.  Isothermal and anisothermal decomposition of carbon fibres polyphenylene sulfide composites for fire behavior analysis , 2019, Fire Safety Journal.

[8]  A. Coppalle,et al.  Fire resistance of carbon-based composite materials under both ideal and realistic normative configurations , 2019, Applied Thermal Engineering.

[9]  S. Stoliarov,et al.  The Impact of Bromine- and Phosphorous-Based Flame Retardants on Flame Stability and Heat Feedback from Laminar Wall Flames , 2018, Fire Safety Journal.

[10]  Dongxing Zhang,et al.  The Optimization of Process Parameters and Characterization of High-Performance CF/PEEK Composites Prepared by Flexible CF/PEEK Plain Weave Fabrics , 2018, Polymers.

[11]  Yan Zhao,et al.  A comprehensive study on controlling the porosity of CCF300/PEEK composites by optimizing the impregnation parameters , 2018 .

[12]  F. Barbe,et al.  Mechanical behavior of carbon fibers polyphenylene sulfide composites exposed to radiant heat flux and constant compressive force , 2018, Composite Structures.

[13]  N. Gascoin,et al.  Release and flammability evaluation of pyrolysis gases from carbon-based composite materials undergoing fire conditions , 2018, Journal of Analytical and Applied Pyrolysis.

[14]  A. Coppalle,et al.  Behaviour of aeronautical polymer composite to flame: A comparative study of thermoset- and thermoplastic-based laminate , 2018, Polymer Degradation and Stability.

[15]  Nan Li,et al.  Light-weighting in aerospace component and system design , 2018, Propulsion and Power Research.

[16]  N. Gascoin,et al.  Determination of thermophysical properties for carbon-reinforced polymer-based composites up to 1000 °C , 2018 .

[17]  S. Timme,et al.  Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale , 2017 .

[18]  F. Barbe,et al.  Post-fire compressive behaviour of carbon fibers woven-ply Polyphenylene Sulfide laminates for aeronautical applications , 2017 .

[19]  N. Grange,et al.  Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components , 2017 .

[20]  Bernhard Schartel,et al.  Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants , 2017 .

[21]  F. Barbe,et al.  Influence of matrix nature on the post-fire mechanical behaviour of notched polymer-based composite structures for high temperature applications , 2016 .

[22]  N. Grange,et al.  Numerical investigation of the heat transfer in an aeronautical composite material under fire stress , 2016 .

[23]  Coppalle Alexis,et al.  Correlation between post fire behavior and microstructure degradation of aeronautical polymer composites , 2015 .

[24]  Fabienne Samyn,et al.  Fire behaviour of carbon fibre epoxy composite for aircraft: Novel test bench and experimental study , 2015 .

[25]  E. Guillaume,et al.  Modélisation de la décomposition thermique des matériaux en cas d'incendie , 2013, Sécurité et gestion des risques.

[26]  S. Duquesne,et al.  Comportement au feu des composites , 2006, Plastiques et composites.

[27]  L. Taleb,et al.  About the influence of stamping on thermoplastic-based composites for aeronautical applications , 2013 .

[28]  S. Stoliarov,et al.  Prediction of the burning rates of non-charring polymers , 2009 .

[29]  A. Iqbal,et al.  High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone , 2007 .

[30]  V. Mathot,et al.  High-speed/high performance differential scanning calorimetry (HPer DSC): Temperature calibration in the heating and cooling mode and minimization of thermal lag , 2006 .

[31]  H. Hamada,et al.  Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites , 2004 .

[32]  P. Hornsby,et al.  Flame retardant effects of magnesium hydroxide , 1996 .

[33]  G. Hinrichsen,et al.  Manufacture of high performance fibre-reinforced thermoplastics by aqueous powder impregnation , 1993 .

[34]  Zongneng Qi,et al.  The thermal decomposition kinetics of poly(ether-ether-ketone) (PEEK) and its carbon fiber composite , 1991 .