Automated and Autonomous Experiment in Electron and Scanning Probe Microscopy

Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics to self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiments (AE) in imaging. Here, we aim to analyze the major pathways toward AE in imaging methods with sequential image formation mechanisms, focusing on scanning probe microscopy (SPM) and (scanning) transmission electron microscopy ((S)TEM). We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment. As such, this analysis should explore the human and ML/AI roles prior to and during the experiment and consider the latencies, biases, and prior knowledge of the decision-making process. Similarly, such discussion should include the limitations of the existing imaging systems, including intrinsic latencies, non-idealities, and drifts comprising both correctable and stochastic components. We further pose that the role of the AE in microscopy is not the exclusion of human operators (as is the case for autonomous driving), but rather automation of routine operations such as microscope tuning, etc., prior to the experiment, and conversion of low latency decision making processes on the time scale spanning from image acquisition to human-level high-order experiment planning. Overall, we argue that ML/AI can dramatically alter the (S)TEM and SPM fields; however, this process is likely to be highly nontrivial and initiated by combined human-ML workflows and will bring challenges both from the microscope and ML/AI sides. At the same time, these methods will enable opportunities and paradigms for scientific discovery and nanostructure fabrication.

[1]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[2]  O. Krivanek,et al.  An electron microscope for the aberration-corrected era. , 2008, Ultramicroscopy.

[3]  Shane Legg,et al.  Reward learning from human preferences and demonstrations in Atari , 2018, NeurIPS.

[4]  R. Feenstra Scanning tunneling spectroscopy , 1994 .

[5]  S. H. Pan,et al.  Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ , 2000, Nature.

[6]  Mohammad Rashidi,et al.  Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning. , 2018, ACS nano.

[7]  Yang Liu,et al.  Stein Variational Policy Gradient , 2017, UAI.

[8]  Colin Ophus,et al.  Subsampled STEM-ptychography , 2018, Applied Physics Letters.

[9]  Andrew Gordon Wilson,et al.  Learning Invariances in Neural Networks , 2020, NeurIPS.

[10]  Stephen Jesse,et al.  Probing local ionic dynamics in functional oxides at the nanoscale. , 2013, Nano letters.

[11]  Zoubin Ghahramani,et al.  Bayesian Active Learning for Classification and Preference Learning , 2011, ArXiv.

[12]  C. M. Folkman,et al.  Sketched oxide single-electron transistor. , 2011, Nature nanotechnology.

[13]  Stephen Jesse,et al.  Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. , 2014, ACS nano.

[14]  Sergei V. Kalinin,et al.  Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. , 2015, Small.

[15]  S O R Moheimani,et al.  High-speed cycloid-scan atomic force microscopy , 2010, Nanotechnology.

[16]  Sergei V. Kalinin,et al.  Ultrafast current imaging by Bayesian inversion , 2018, Nature Communications.

[17]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[18]  P. Nellist,et al.  Subangstrom Resolution by Underfocused Incoherent Transmission Electron Microscopy , 1998 .

[19]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[20]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[21]  Jakub W. Pachocki,et al.  Dota 2 with Large Scale Deep Reinforcement Learning , 2019, ArXiv.

[22]  Francesc Pérez-Murano,et al.  Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation , 1998 .

[23]  Andreas K. Schmid,et al.  K-space Navigation for Accurate High-angle Tilting and Control of the TEAM Sample Stage , 2009 .

[24]  Takao Matsumoto,et al.  Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy , 2015, Scientific Reports.

[25]  Bart Goris,et al.  Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy , 2015, 1509.06656.

[26]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[27]  L. Carin,et al.  Applying compressive sensing to TEM video: a substantial frame rate increase on any camera , 2015, Advanced Structural and Chemical Imaging.

[28]  D. Eigler,et al.  Molecule Cascades , 2002, Science.

[29]  Evgeny Burnaev,et al.  Adaptive Design of Experiments Based on Gaussian Processes , 2015, SLDS.

[30]  Ondrej Dyck,et al.  Placing single atoms in graphene with a scanning transmission electron microscope , 2017 .

[31]  Patrick K. Herring,et al.  py4DSTEM: Open Source Software for 4D-STEM Data Analysis , 2019, Microscopy and Microanalysis.

[32]  W. J. Weber,et al.  Electron-beam induced recrystallization in amorphous apatite , 2007 .

[33]  D. Leonard,et al.  Patterning: Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). , 2015, Small.

[34]  Dawn A. Bonnell,et al.  Materials in nanotechnology: New structures, new properties, new complexity , 2003 .

[35]  Sergei V. Kalinin,et al.  Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy , 2021, npj Computational Materials.

[36]  Jannik C Meyer,et al.  Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. , 2017, Ultramicroscopy.

[37]  S. Moheimani,et al.  Rosette-scan video-rate atomic force microscopy: Trajectory patterning and control design. , 2019, The Review of scientific instruments.

[38]  D. Alexander,et al.  Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. , 2006, Ultramicroscopy.

[39]  Ranga Raju Vatsavai,et al.  Detecting magnetic ordering with atomic size electron probes , 2016, Advanced Structural and Chemical Imaging.

[40]  Sergei V. Kalinin,et al.  Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study , 2018, Science Advances.

[41]  Michael Smithson,et al.  Doing Bayesian Data Analysis: A Tutorial with R and BUGS, J.J. Kruschke. Academic Press (2011), 653, $89.95Reviewed by Michael Smithson, ISBN: 9780123814852 , 2011 .

[42]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[43]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials , 2005 .

[44]  Sergei V. Kalinin,et al.  Scanning probe microscopy of functional materials : nanoscale imaging and spectroscopy , 2010 .

[45]  Sergei V. Kalinin,et al.  Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways , 2017, Scientific Reports.

[46]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[47]  B. Sumpter,et al.  Electronically Nonadiabatic Structural Transformations Promoted by Electron Beams , 2019, Advanced Functional Materials.

[48]  O. Scherzer Spharische und chromatische Korrektur von Elektronen-Linsen , 1947 .

[49]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[50]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[51]  O. Zelaya-Ángel,et al.  Crystallization from amorphous structure to hexagonal quantum dots induced by an electron beam on CdTe thin films , 2009 .

[52]  Rama Vasudevan,et al.  Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. , 2017, ACS nano.

[53]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[54]  Maxim Ziatdinov,et al.  Toward Decoding the Relationship between Domain Structure and Functionality in Ferroelectrics via Hidden Latent Variables. , 2021, ACS applied materials & interfaces.

[55]  Sergei V. Kalinin,et al.  Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. , 2020, ACS nano.

[56]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[57]  S. Bhowmick,et al.  Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe. , 2014, Physical review letters.

[58]  Shao-Kang Hung,et al.  Spiral scanning method for atomic force microscopy. , 2010, Journal of nanoscience and nanotechnology.

[59]  S. Pennycook,et al.  Atomic-resolution spectroscopic imaging: past, present and future. , 2009, Journal of electron microscopy.

[60]  Thomas E. Potok,et al.  A bridge for accelerating materials by design , 2015 .

[61]  Christian Wagner,et al.  Autonomous robotic nanofabrication with reinforcement learning , 2020, Science Advances.

[62]  Guido Herrmann,et al.  An adaptive non-raster scanning method in Atomic Force Microscopy for simple sample shapes , 2015 .

[63]  Peter D. Hoff,et al.  A First Course in Bayesian Statistical Methods , 2009 .

[64]  Peng Huang,et al.  Note: Fast imaging of DNA in atomic force microscopy enabled by a local raster scan algorithm. , 2014, The Review of scientific instruments.

[65]  F. Fischer,et al.  Automated Tip Conditioning for Scanning Tunneling Spectroscopy. , 2021, Journal of Physical Chemistry A.

[66]  Sergei V. Kalinin,et al.  Exploring order parameters and dynamic processes in disordered systems via variational autoencoders , 2021, Science Advances.

[67]  Amit Kumar,et al.  Polarization Dynamics in Ferroelectric Capacitors: Local Perspective on Emergent Collective Behavior and Memory Effects , 2013 .

[68]  Noël Bonnet,et al.  Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis , 1999 .

[69]  Chaomei Chen,et al.  Big, Deep, and Smart Data in Scanning Probe Microscopy. , 2016, ACS nano.

[70]  Niklas Dellby,et al.  Monochromated STEM with a 30 meV-wide, atom-sized electron probe. , 2013, Microscopy.

[71]  Li Li,et al.  Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe2As2 , 2016, Nanotechnology.

[72]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[73]  Claudia Draxl,et al.  The NOMAD laboratory: from data sharing to artificial intelligence , 2019, Journal of Physics: Materials.

[74]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[75]  C. Brabec,et al.  A Bayesian Approach to Predict Solubility Parameters , 2018, Advanced Theory and Simulations.

[76]  Ayana Ghosh,et al.  Ensemble learning and iterative training (ELIT) machine learning: applications towards uncertainty quantification and automated experiment in atom-resolved microscopy , 2021 .

[77]  Sergei V. Kalinin,et al.  Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics , 2012 .

[78]  R. Vasudevan,et al.  USID and Pycroscopy – Open Source Frameworks for Storing and Analyzing Imaging and Spectroscopy Data , 2019, Microscopy and Microanalysis.

[79]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .

[80]  Gunnar Rätsch,et al.  Deep Mean Functions for Meta-Learning in Gaussian Processes , 2019, ArXiv.

[81]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[82]  Shi Liu,et al.  Electron-beam-induced ferroelectric domain behavior in the transmission electron microscope: Toward deterministic domain patterning , 2016 .

[83]  O. Scherzer,et al.  Über einige Fehler von Elektronenlinsen , 1936 .

[84]  Jean-Yves Tourneret,et al.  Bayesian Fusion of Multi-Band Images , 2013, IEEE Journal of Selected Topics in Signal Processing.

[85]  Materials contrast in piezoresponse force microscopy , 2006, cond-mat/0603010.

[86]  J. Lygeros,et al.  High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories , 2012, Nanotechnology.

[87]  I. M. Robertson,et al.  Electron beam induced regrowth of ion implantation damage in Si and Ge , 1999 .

[88]  M. Noack,et al.  Advances in Kriging-Based Autonomous X-Ray Scattering Experiments , 2020, Scientific Reports.

[89]  REPRINT OF: Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. , 2011, Ultramicroscopy.

[90]  Sergei V. Kalinin,et al.  A self-driving microscope and the Atomic Forge , 2019, MRS Bulletin.

[91]  Ricardo Garcia,et al.  Nano-chemistry and scanning probe nanolithographies. , 2006, Chemical Society reviews.

[92]  Stephen Jesse,et al.  Correlative Multimodal Probing of Ionically-Mediated Electromechanical Phenomena in Simple Oxides , 2013, Scientific Reports.

[93]  Peter J. Liu,et al.  Using Gaussian process regression to denoise images and remove artefacts from microarray data , 2007 .

[94]  Eirik Endeve,et al.  Dynamic scan control in STEM: spiral scans , 2016, Advanced Structural and Chemical Imaging.

[95]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[96]  Saeid Nahavandi,et al.  Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications , 2018, IEEE Transactions on Cybernetics.

[97]  Sean B Andersson,et al.  A continuous sampling pattern design algorithm for atomic force microscopy images. , 2019, Ultramicroscopy.

[98]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[99]  M. Ziatdinov,et al.  Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. , 2016, Nanotechnology.

[100]  Stephen Jesse,et al.  Fire up the atom forge , 2016, Nature.

[101]  M. Terrones,et al.  Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. , 2014, ACS nano.

[102]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[103]  Toshihiro Aoki,et al.  Damage-free vibrational spectroscopy of biological materials in the electron microscope , 2016, Nature Communications.

[104]  C. W. Han,et al.  Towards the low-dose characterization of beam sensitive nanostructures via implementation of sparse image acquisition in scanning transmission electron microscopy , 2017 .

[105]  Hyrum S. Anderson,et al.  Sparse imaging for fast electron microscopy , 2013, Electronic Imaging.

[106]  Seiji Takeda,et al.  Current status and future directions for in situ transmission electron microscopy. , 2016, Ultramicroscopy.

[107]  Sergei V. Kalinin,et al.  Band excitation in scanning probe microscopy: recognition and functional imaging. , 2014, Annual review of physical chemistry.

[108]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[109]  Ole Winther,et al.  A Deep Learning Approach to Identify Local Structures in Atomic‐Resolution Transmission Electron Microscopy Images , 2018, Advanced Theory and Simulations.

[110]  Alberto Zobelli,et al.  Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns. , 2019, Ultramicroscopy.

[111]  M. Sperl,et al.  Detection of magnetic circular dichroism on the two-nanometer scale , 2008 .

[112]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[113]  B. Sumpter,et al.  Artificial neural network correction for density-functional tight-binding molecular dynamics simulations , 2019, MRS Communications.

[114]  Sergei V. Kalinin,et al.  Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning , 2020 .

[115]  Jakub W. Pachocki,et al.  Learning dexterous in-hand manipulation , 2018, Int. J. Robotics Res..

[116]  Tristan Bepler,et al.  Explicitly disentangling image content from translation and rotation with spatial-VAE , 2019, NeurIPS.

[117]  J. Niedziela,et al.  Scanning Tunneling Microscopy , 2008 .

[118]  Ondrej Dyck,et al.  Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2 , 2018, npj Computational Materials.

[119]  Maxim Ziatdinov,et al.  Learning surface molecular structures via machine vision , 2017, npj Computational Materials.

[120]  Andrew Gordon Wilson,et al.  Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.

[121]  Nanoscale domain patterning of lead zirconate titanate materials using electron beams , 2004 .

[122]  Jean-Yves Tourneret,et al.  Fast Fusion of Multi-Band Images Based on Solving a Sylvester Equation , 2015, IEEE Transactions on Image Processing.

[123]  L. Carin,et al.  The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. , 2014, Microscopy.

[124]  Sergei V. Kalinin,et al.  Directing Matter: Toward Atomic-Scale 3D Nanofabrication. , 2016, ACS nano.

[125]  P. Schattschneider,et al.  Detection of magnetic circular dichroism using a transmission electron microscope , 2006, Nature.

[126]  Ryota Kanai,et al.  A unified strategy for implementing curiosity and empowerment driven reinforcement learning , 2018, ArXiv.

[127]  M. Ziatdinov,et al.  Building ferroelectric from the bottom up: The machine learning analysis of the atomic-scale ferroelectric distortions , 2019, Applied Physics Letters.

[128]  M. Engelhard,et al.  Irradiation behavior of SrTiO3 at temperatures close to the critical temperature for amorphization , 2006 .

[129]  Ruipeng Li,et al.  A Kriging-Based Approach to Autonomous Experimentation with Applications to X-Ray Scattering , 2019, Scientific Reports.

[130]  Stefano Ermon,et al.  Bias and Generalization in Deep Generative Models: An Empirical Study , 2018, NeurIPS.

[131]  Alán Aspuru-Guzik,et al.  Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics , 2017 .

[132]  A. Gruverman,et al.  Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control , 1997 .

[133]  Jean-Yves Tourneret,et al.  Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[134]  Ricardo Garcia,et al.  Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods , 2001 .

[135]  Frank Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2020, Nature Chemistry.

[136]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[137]  I. M. Robertson,et al.  Regrowth of amorphous regions in semiconductors by sub-threshold electron beams , 1996 .

[138]  Sergei V. Kalinin,et al.  Fast Scanning Probe Microscopy via Machine Learning: Non-Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. , 2020, Small.

[139]  John M. Rodenburg,et al.  Beyond the conventional information limit: the relevant coherence function , 1994 .

[140]  Bryce Meredig,et al.  Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access , 2016 .

[141]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[142]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[143]  Li Li,et al.  Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds , 2018, ArXiv.

[144]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[145]  J. Keum,et al.  Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope , 2019, Science.

[146]  Current imaging tunneling spectroscopy of metallic deposits on silicon , 1992 .

[147]  Isabella Haberbosch,et al.  Software tools for automated transmission electron microscopy , 2018, Nature Methods.

[148]  Alexei A. Efros,et al.  Curiosity-Driven Exploration by Self-Supervised Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[149]  P. Schattschneider,et al.  Production and application of electron vortex beams , 2010, Nature.

[150]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[152]  Sergei V. Kalinin,et al.  Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response , 2009, Nanotechnology.

[153]  Francesco Zerbetto,et al.  Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope , 2010 .

[154]  Sebastian Nowozin,et al.  Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift , 2019, NeurIPS.

[155]  Elliot J. Crowley,et al.  Deep Kernel Transfer in Gaussian Processes for Few-shot Learning , 2019, ArXiv.

[156]  A. Bezryadin,et al.  Sub-10 nanometre fabrication: molecular templating, electron-beam sculpting and crystallization of metallic nanowires , 2005 .

[157]  Luís Paulo Reis,et al.  From Reinforcement Learning Towards Artificial General Intelligence , 2020, WorldCIST.

[158]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[159]  Peter Maksymovych,et al.  Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics , 2008 .

[160]  David Pfau,et al.  Towards a Definition of Disentangled Representations , 2018, ArXiv.

[161]  Juri Barthel,et al.  Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. , 2010, Ultramicroscopy.

[162]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[163]  Deng Cai,et al.  Deep Rotation Equivariant Network , 2017, Neurocomputing.

[164]  P D Nellist,et al.  Progress in aberration-corrected scanning transmission electron microscopy. , 2001, Journal of electron microscopy.

[165]  John M. Rodenburg,et al.  Experimental tests on double-resolution coherent imaging via STEM , 1993 .

[166]  Naoya Shibata,et al.  Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.

[167]  N. Browning,et al.  Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging , 2016 .

[168]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[169]  Miguel Fuentes-Cabrera,et al.  Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback , 2017, Nanotechnology.

[170]  Alán Aspuru-Guzik,et al.  Beyond Ternary OPV: High‐Throughput Experimentation and Self‐Driving Laboratories Optimize Multicomponent Systems , 2019, Advanced materials.

[171]  Amit Kumar,et al.  Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains , 2012 .

[172]  Sergey Levine,et al.  Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor , 2018, ICML.

[173]  I. A. Mahmood,et al.  Fast spiral-scan atomic force microscopy , 2009, Nanotechnology.

[174]  Natalio Krasnogor,et al.  Automated probe microscopy via evolutionary optimization at the atomic scale , 2011 .

[175]  O. Stéphan,et al.  Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. , 2016, Ultramicroscopy.

[176]  S Jesse,et al.  Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry. , 2009, Nanotechnology.

[177]  Electromechanical detection in scanning probe microscopy: Tip models and materials contrast , 2006, cond-mat/0607543.

[178]  P. Marquetand,et al.  Machine Learning for Electronically Excited States of Molecules , 2020, Chemical reviews.

[179]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[180]  J. Hachtel,et al.  Nion Swift: Open Source Image Processing Software for Instrument Control, Data Acquisition, Organization, Visualization, and Analysis Using Python. , 2019, Microscopy and Microanalysis.

[181]  C. Rother,et al.  Artificial-intelligence-driven scanning probe microscopy , 2020 .

[182]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[183]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[184]  H. Sawada,et al.  Measurement method of aberration from Ronchigram by autocorrelation function. , 2008, Ultramicroscopy.

[185]  Christoph Brune,et al.  Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data. , 2013, Nanotechnology.

[186]  Noël Bonnet,et al.  Artificial intelligence and pattern recognition techniques in microscope image processing and analysis , 2000 .