ANALYSIS OF MARKOV-MODULATED INFINITE-SERVER QUEUES IN THE CENTRAL-LIMIT REGIME

This paper focuses on an infinite-server queue modulated by an independently evolving finite-state Markovian background process, with transition rate matrix Q≡(q ij ) i,j=1 d . Both arrival rates and service rates are depending on the state of the background process. The main contribution concerns the derivation of central limit theorems (CLTs) for the number of customers in the system at time t≥0, in the asymptotic regime in which the arrival rates λ i are scaled by a factor N, and the transition rates q ij by a factor N α, with α∈ℝ+. The specific value of α has a crucial impact on the result: (i) for α>1 the system essentially behaves as an M/M/∞ queue, and in the CLT the centered process has to be normalized by √N; (ii) for α<1, the centered process has to be normalized by N 1−α/2, with the deviation matrix appearing in the expression for the variance.

[1]  Time-Scaling Limits for Markov-Modulated Infinite-Server Queues , 2012 .

[2]  Nico Vandaele,et al.  Modeling Traffic Flows with Queueing Models: a Review , 2007, Asia Pac. J. Oper. Res..

[3]  H. Thorsdottir,et al.  A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue , 2013 .

[4]  Michel Mandjes,et al.  Markov-modulated infinite-server queues with general service times , 2014, Queueing Syst. Theory Appl..

[5]  R. Courant,et al.  Methoden der mathematischen Physik , .

[6]  B Bernardo D'Auria $M/M/\infty$ queues in quasi-Markovian random environment , 2007 .

[7]  Gennadi Falin,et al.  The M/M/∞ queue in a random environment , 2008, Queueing Syst. Theory Appl..

[8]  Michel Mandjes,et al.  Semi-Markov-Modulated Infinite-Server Queues: Approximations by Time-Scaling , 2012 .

[9]  B. Nordstrom FINITE MARKOV CHAINS , 2005 .

[10]  Ivo J. B. F. Adan,et al.  An infinite-server queue influenced by a semi-Markovian environment , 2009, Queueing Syst. Theory Appl..

[11]  L. M. Milne-Thomson Methoden der mathematischen Physik , 1944, Nature.

[12]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[13]  Julian Keilson,et al.  The matrix M/M/∞ system: retrial models and Markov modulated sources , 1993 .

[14]  Michel Mandjes,et al.  A Central Limit Theorem for Markov-Modulated Infinite-Server Queues , 2013, ASMTA.

[15]  Bernardo D'Auria M/M/∞ queues in semi-Markovian random environment , 2008, Queueing Syst. Theory Appl..

[16]  Pauline Coolen-Schrijner,et al.  THE DEVIATION MATRIX OF A CONTINUOUS-TIME MARKOV CHAIN , 2002, Probability in the Engineering and Informational Sciences.

[17]  Katja N. Rybakova,et al.  Transcription stochasticity of complex gene regulation models. , 2012, Biophysical journal.

[18]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .