Tellurite glass: a new candidate for fiber devices

[1]  George H. Sigel,et al.  Low-loss rare earth doped single-mode fiber by sol-gel method , 1993 .

[2]  E. Snitzer,et al.  Pr(3+)-doped fluoride fiber amplifier operating at 1.31 microm. , 1991, Optics letters.

[3]  Yasutake Ohishi,et al.  Laser diode pumped Pr/sup 3+/-doped and Pr/sup 3+/-Yb/sup 3+/-codoped fluoride fiber amplifiers operating at 1.3 mu m , 1991 .

[4]  Y. Miyajima,et al.  38.2 dB amplification at 1.31 mu m and possibility of 0.98 mu m pumping in Pr/sup 3+/-doped fluoride fibre , 1991 .

[5]  Anne C. Tropper,et al.  Efficient and tunable operation of a Tm-doped fibre laser , 1990 .

[6]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[7]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[8]  David N. Payne,et al.  Solution-doping technique for fabrication of rare-earth-doped optical fibres , 1987 .

[9]  Renata Reisfeld,et al.  Spectroscopy of praseodymium(III) in zirconium fluoride glass , 1985 .

[10]  W. H. Dumbaugh Infrared Transmitting Glasses , 1985 .

[11]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[12]  J. Mackenzie,et al.  Viscosity of molten fluorozirconates , 1983 .

[13]  A. J. Bruce,et al.  Preparation and Properties of Heavy‐Metal Fluoride Glasses Containing Ytterbium or Lutetium , 1982 .

[14]  A. Bornstein,et al.  Laser emission cross-section and threshold power for laser operation at 1077 nm and 1370 nm; chalcogenide mini-lasers doped by Nd3+ , 1982 .

[15]  Seiko Mitachi,et al.  Prediction of loss minima in infra-red optical fibres , 1981 .

[16]  Douglas H. Blackburn,et al.  Optical properties of Nd3+ in tellurite and phosphotellurite glasses , 1981 .

[17]  R. Reisfeld,et al.  Multiphonon relaxation rates and fluorescence lifetimes for Tm3+ in four oxide glasses , 1977 .

[18]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[19]  Renata Reisfeld,et al.  Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses , 1977 .

[20]  C. T. Moynihan,et al.  Heat Capacity and Structural Relaxation of Mixed‐Alkali Glasses , 1976 .

[21]  C. Burrus,et al.  Neodymium‐doped silica lasers in end‐pumped fiber geometry , 1973 .

[22]  M. J. Weber,et al.  Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[23]  F. W. Ostermayer,et al.  Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials , 1973 .

[24]  M. Miller,et al.  Multiphonon decay of excited states of rare earth ions in crystals , 1971 .

[25]  D. L. Dexter,et al.  Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids , 1970 .

[26]  E. Snitzer,et al.  Yb3+–Er3+ GLASS LASER , 1965 .

[27]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[28]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[29]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[30]  M. Weber Fluorescence and glass lasers , 1982 .