Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa)

A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) metho...

[1]  J. Kress,et al.  Energy relaxation rates in dense hydrogen plasmas. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  B. Canaud,et al.  Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state. , 2011, Physical Review Letters.

[3]  Gilbert W. Collins,et al.  Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements , 2012 .

[4]  V. Goncharov,et al.  Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .

[5]  David F Richards,et al.  Molecular dynamics simulations of electron-ion temperature equilibration in an SF6 plasma. , 2009, Physical review letters.

[6]  Ceperley,et al.  Path integral monte carlo calculation of the deuterium hugoniot , 2000, Physical review letters.

[7]  Guy Dimonte,et al.  Molecular-dynamics simulations of electron-ion temperature relaxation in a classical Coulomb plasma. , 2008, Physical review letters.

[8]  W. Ebeling,et al.  Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations , 2001, physics/0103002.

[9]  E. Dewald,et al.  Design of a high-foot high-adiabat ICF capsule for the national ignition facility. , 2013, Physical review letters.

[10]  Kwon,et al.  Quantum molecular dynamics simulations of hot, dense hydrogen. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  J. M. Koning,et al.  Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs , 2011 .

[12]  Ted Taylor Los Alamos National Laboratory , 2005 .

[13]  S. J. Moon,et al.  Properties of fluid deuterium under double-shock compression to several Mbar , 2004 .

[14]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[15]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[16]  S. Mazevet,et al.  Multiphase equation of state of hydrogen fromab initiocalculations in the range 0.2 to 5 g/cc up to 10 eV , 2011 .

[17]  J. A. Marozas,et al.  High-performance inertial confinement fusion target implosions on OMEGA , 2011 .

[18]  Wolfgang Windl,et al.  Dynamical and optical properties of warm dense hydrogen , 2001 .

[19]  R. Redmer,et al.  Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen , 2011, 1205.0429.

[20]  J. Kress,et al.  Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Ceperley,et al.  Equation of state of the hydrogen plasma by path integral Monte Carlo simulation. , 1994, Physical review letters.

[22]  Riccardo Betti,et al.  A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion , 2008 .

[23]  J. Kress,et al.  Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes , 2012 .

[24]  N. H. Magee,et al.  Simulations of the optical properties of warm dense aluminum. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[26]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[27]  T. Boehly,et al.  Properties of warm dense polystyrene plasmas along the principal Hugoniot. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[29]  D. Clark,et al.  Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications , 2012 .

[30]  B. Militzer,et al.  A multiphase equation of state for carbon addressing high pressures and temperatures , 2013, 1311.4577.

[31]  M. Desjarlais,et al.  On the transport coefficients of hydrogen in the inertial confinement fusion regime a) , 2011 .

[32]  B. Militzer,et al.  Strong coupling and degeneracy effects in inertial confinement fusion implosions. , 2010, Physical review letters.

[33]  D. K. Bradley,et al.  Experimental studies of ICF indirect-drive Be and high density C candidate ablators , 2007 .

[34]  Michael P. Desjarlais,et al.  Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations , 2007, 0710.1006.

[35]  P. B. Radha,et al.  Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA. , 2008, Physical review letters.

[36]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[37]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[38]  W. Selke,et al.  Monte Carlo and molecular dynamics of condensed matter systems , 1997 .

[39]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[40]  Dean L. Preston,et al.  Charged Particle Motion in a Highly Ionized Plasma , 2005 .

[41]  D A Greenwood,et al.  The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .

[42]  V. Fortov,et al.  Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. , 2007, Physical review letters.

[43]  O. L. Landen,et al.  Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility , 2009 .

[44]  D. Russell,et al.  Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping , 2013 .

[45]  O. Landen,et al.  In-flight measurements of capsule shell adiabats in laser-driven implosions. , 2011, Physical review letters.

[46]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[47]  J. Clérouin,et al.  DENSE HYDROGEN PLASMA : COMPARISON BETWEEN MODELS , 1997 .

[48]  D. T. Michel,et al.  Hydrodynamic simulations of long-scale-length two-plasmon-decay experiments at the Omega Laser Facility , 2013 .

[49]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[50]  J. Kress,et al.  First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[52]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[53]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[56]  BOOK REVIEWS: "MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS", edited by K. Binder and G. Ciccotti , 1996 .

[57]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[58]  P. B. Radha,et al.  Inelastic x-ray scattering from shocked liquid deuterium. , 2012, Physical review letters.

[59]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[60]  J. A. Marozas,et al.  Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium , 2011 .

[61]  Ping Zhang,et al.  Thermophysical properties for shock compressed polystyrene , 2011, 1101.4793.

[62]  Gilbert W. Collins,et al.  Velocity and timing of multiple spherically converging shock waves in liquid deuterium. , 2011, Physical review letters.

[63]  J. A. Marozas,et al.  Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .

[64]  J. A. Marozas,et al.  Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facilitya) , 2014 .

[65]  M. Desjarlais,et al.  First-principles and classical molecular dynamics simulation of shocked polymers , 2010 .

[66]  P. B. Radha,et al.  Improving cryogenic deuterium–tritium implosion performance on OMEGAa) , 2013 .

[67]  J. Kress,et al.  Calculations of the thermal conductivity of National Ignition Facility target materials at temperatures near 10 eV and densities near 10 g/cc using finite-temperature quantum molecular dynamics , 2011 .

[68]  Ping Zhang,et al.  Wide range equation of state for fluid hydrogen within density functional theory , 2013, 1306.1902.

[69]  V N Goncharov,et al.  Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants. , 2012, Physical review letters.

[70]  Max Bonnefille,et al.  Progress on LMJ targets for ignition , 2009 .

[71]  S. X. Hu,et al.  Effects of electron-ion temperature equilibration on inertial confinement fusion implosions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  J. Dufrêche,et al.  Ab initio study of deuterium in the dissociating regime: sound speed and transport properties. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[74]  P. B. Radha,et al.  Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system , 2009 .

[75]  Gilbert W. Collins,et al.  Shock-induced transformation of liquid deuterium into a metallic fluid , 2000, Physical review letters.

[76]  J. Kress,et al.  Calculation of a deuterium double shock Hugoniot from ab initio simulations. , 2001, Physical review letters.

[77]  M. Desjarlais Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing , 2003 .

[78]  M. Knudson,et al.  Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.

[79]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[80]  D. Meyerhofer,et al.  Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets , 2012 .

[81]  Li,et al.  Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.

[82]  C. Blancard,et al.  Electron-ion temperature relaxation in hydrogen plasmas , 2013 .

[83]  Gilbert W. Collins,et al.  Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa , 2009 .

[84]  J. Kress,et al.  Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium , 2011 .

[85]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[86]  S. Skupsky Energy loss of ions moving through high-density matter , 1977 .

[87]  David F Richards,et al.  Molecular dynamics simulations and generalized Lenard-Balescu calculations of electron-ion temperature equilibration in plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  B. Canaud,et al.  Ab initio determination of thermal conductivity of dense hydrogen plasmas. , 2009, Physical review letters.

[89]  Pollock,et al.  Variational density matrix method for warm, condensed matter: application to dense hydrogen , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[90]  O. Landen,et al.  Demonstration of spectrally resolved x-ray scattering in dense plasmas. , 2003, Physical review letters.

[91]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[92]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[93]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[94]  Gilbert W. Collins,et al.  Absolute equation of state measurements of shocked liquid deuterium up to 200 GPa (2 Mbar) , 1997 .

[95]  G. V. Simakov,et al.  Shock-wave compression of solid deuterium at a pressure of 120 GPa , 2003 .

[96]  V. Goncharov,et al.  Burning plasmas with ultrashort soft-x-ray flashing , 2012 .

[97]  W. Kraeft,et al.  The equation of state for hydrogen at high densities , 2013 .

[98]  B. Militzer,et al.  All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. , 2012, Physical review letters.

[99]  R. F. Smith,et al.  Ramp compression of diamond to five terapascals , 2014, Nature.

[100]  Progress towards polar-drive ignition for the NIF , 2013 .

[101]  D. T. Michel,et al.  Experimental validation of the two-plasmon-decay common-wave process. , 2012, Physical review letters.

[102]  G. Kerley Equation of state and phase diagram of dense hydrogen , 1972 .

[103]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[104]  R. London,et al.  Molecular dynamics simulations of temperature equilibration in dense hydrogen. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[106]  Raymond Jeanloz,et al.  Extended data set for the equation of state of warm dense hydrogen isotopes , 2012 .

[107]  E. L. Pollock Properties and computation of the Coulomb pair density matrix , 1988 .

[108]  S. Trickey,et al.  Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations , 2013, 1308.2193.

[109]  F. Graziani,et al.  Molecular dynamics simulations of classical stopping power. , 2013, Physical review letters.

[110]  V N Goncharov,et al.  Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on OMEGA. , 2008, Physical review letters.

[111]  First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  Ping Zhang,et al.  Transport properties of dense deuterium-tritium plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  D. Ceperley,et al.  The Properties of Hydrogen and Helium Under Extreme Conditions , 2011 .

[114]  D. T. Michel,et al.  Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. , 2012, Physical review letters.

[115]  First principles calculations of shock compressed fluid helium. , 2006, Physical review letters.

[116]  S. Skupsky,et al.  First-principles equation-of-state table of deuterium for inertial confinement fusion applications , 2011, 1110.0001.

[117]  J. A. Marozas,et al.  Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA , 2010 .

[118]  L. Videau,et al.  Electrical and thermal conductivities in dense plasmas , 2014 .