Effect of temperature and magnetic field on magnetomechanical damping of Fe-based bulk metallic glasses

Temperature and magnetic field dependence of magnetomechanical damping (MMD) of two ferromagnetic Fe-based bulk metallic glasses with different Curie temperatures, TC, have been studied over a broad temperature interval from the para-ferromagnetic transition down to 15 K. The damping has been scanned under periodic magnetic field at certain preselected temperatures in the ferromagnetic and paramagnetic phases. The selection of bulk metallic glasses for investigations allowed us to eliminate all dislocation-related anelastic effects and facilitated separation of the MMD components. Under zero field, the non-linear MMD emerges at TC and first increases linearly with (TC  −  T), then levels off until a maximum is formed at around 36 K. At lower temperatures, the magnetic domain wall related non-linear MMD component is partially or completely supressed, depending on the alloy composition. Qualitatively similar anomaly is found in the temperature dependence of the linear macroeddy current damping. These anomalies in the temperature spectra are concomitant with the emergence of a notable hysteresis in MMD versus periodic field dependences and of a maximum of non-linear MMD close to the position of the macroeddy damping peak. The uncovered phenomena are attributed to abrupt change of magnetic properties of ferromagnetic bulk metallic glasses at low temperatures, presumably due to the re-entrant spin glass transition.

[1]  Q. Wei,et al.  Development of Fe-based bulk metallic glasses as potential biomaterials. , 2015, Materials science & engineering. C, Materials for biological applications.

[2]  A. Inoue,et al.  Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity , 2014, Scientific Reports.

[3]  D. Raabe,et al.  Element-Resolved Corrosion Analysis of Stainless-Type Glass-Forming Steels , 2013, Science.

[4]  A. Inoue,et al.  Iron-based bulk metallic glasses , 2013 .

[5]  G. Herzer Modern Soft Magnets: Amorphous and Nanocrystalline Materials , 2013 .

[6]  J. Eckert,et al.  Elastic and anelastic properties close to the Curie temperature of Fe-based bulk metallic glass , 2013 .

[7]  B. Shen,et al.  Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses , 2012 .

[8]  Sam Palmer,et al.  Magnetic domains , 2012, Journal of High Energy Physics.

[9]  A. Takeuchi,et al.  Recent development and application products of bulk glassy alloys , 2011 .

[10]  Zhidong Zhang,et al.  Spin-glass behavior and magnetocaloric effect in Tb-based bulk metallic glass , 2009 .

[11]  Weihua Wang,et al.  Critical and slow dynamics in a bulk metallic glass exhibiting strong random magnetic anisotropy , 2008 .

[12]  Weihua Wang,et al.  Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range , 2007 .

[13]  Gary J. Shiflet,et al.  Mechanical properties of iron-based bulk metallic glasses , 2007 .

[14]  G. Gremaud,et al.  A new design of automated piezoelectric composite oscillator technique , 2006 .

[15]  D. Zhao,et al.  Magnetic transitions in Dy-microalloyed Fe-based bulk metallic glasses , 2005 .

[16]  G. Wang,et al.  Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy , 2005 .

[17]  C. Liu,et al.  Structural amorphous steels. , 2004, Physical review letters.

[18]  S. Poon,et al.  Fe-based bulk metallic glasses with diameter thickness larger than one centimeter , 2004 .

[19]  P. Gorria,et al.  Reentrant spin-glass behavior in Fe-Zr-B amorphous alloys , 2003 .

[20]  A. Yavari,et al.  Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties , 2003, Nature materials.

[21]  J. Cadogan,et al.  Transverse spin freezing in a-(Fe1-xMnx)78Si8B14: A site-frustrated metallic glass , 2003 .

[22]  G. Gremaud,et al.  9.2 Ultrasonics Techniques: PUCOT and ACT , 2001 .

[23]  M. Morin,et al.  Application of acoustic technique to determine the temperature range of quenched-in defect mobility in Cu-Al-Be β'1 martensitic phase , 2000 .

[24]  E. Gaganidze,et al.  Vibrating ferromagnets in a magnetic field , 2000 .

[25]  E. Gaganidze,et al.  Dynamical response of vibrating ferromagnets , 2000 .

[26]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[27]  P. Pal-val Low-temperature dislocation and magnetomechanical acoustic effects in high purity Fe single crystals , 1999 .

[28]  E. Gaganidze,et al.  Vibrating ferromagnet in a magnetic field , 1997 .

[29]  G. Herzer,et al.  Chapter 3 Nanocrystalline soft magnetic alloys , 1997 .

[30]  P. Squire Magnetomechanical measurements and their application to soft magnetic materials , 1996 .

[31]  Mattsson,et al.  Dynamic susceptibility of a reentrant ferromagnet. , 1996, Physical review. B, Condensed matter.

[32]  L. Malkinski The role of residual stresses in magnetostrictive metallic glasses , 1995 .

[33]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[34]  V. F. Coronel,et al.  Magnetomechanical damping in iron , 1988 .

[35]  D. N. Beshers,et al.  Magneto‐mechanical damping at low temperatures in purified iron , 1988 .

[36]  K. Westerholt,et al.  Magnetic hysteresis properties of metglasses from the system (Fe1−xCrx)85B15 close to the critical concentration for ferromagnetic long range order , 1987 .

[37]  N. Kobelev,et al.  “Giant” ΔE-Effect and Magnetomechanical Damping in Amorphous Ferromagnetic Ribbons , 1987 .

[38]  K. Westerholt,et al.  Anomalous low temperature hysteresis properties of ferromagnetic metglasses , 1987 .

[39]  M. Salamon,et al.  Spin-glass-ferromagnetic multicritical point in amorphous Fe-Mn alloys , 1980 .

[40]  R. Bozorth Stress and Magnetostriction , 1978 .

[41]  B. S. Berry,et al.  Magnetoelasticity and internal friction of an amorphous ferromagnetic alloy , 1976 .

[42]  W. Robinson,et al.  The Piezoelectric Method of Determining Mechanical Damping at Frequencies of 30 to 200 KHz , 1974, IEEE Transactions on Sonics and Ultrasonics.

[43]  J. R. Birchak,et al.  Internal Stress Distribution Theory of Magnetomechanical Hysteresis‐An Extension to Include Effects of Magnetic Field and Applied Stress , 1969 .

[44]  P. Barrand,et al.  Magnetomechanical damping effects in iron and mumetal , 1969 .

[45]  P. Barrand,et al.  Magnetomechanical damping behaviour in pure nickel and a 20 wt.% copper-nickel alloy , 1967 .

[46]  C. Zener Internal Friction in Solids V. General Theory of Macroscopic Eddy Currents , 1938 .