On computing greatest common divisors with polynomials given by black boxes for their evaluations

The black box representation of a multivariate polynomial is a function that takes as input a value for each variable and then produces the value of the polynomial. We revisit the problem of computing the greatest common divisor (GCD) in black box format of several multivariate polynomials that themselves are given by black boxes. To this end an improved version of the algorithm sketched in Kaltofen and Trager [J. Symbolic Comput., vol. 9, nr. 3, p. 311 (1990)] is described. Also the full analysis of the improved algorithm is given. Our algorithm constructs in random polynomial-time a procedure that will evaluate a fixed associate of the GCD at an arbitrary point (supplied as its input) in polynomial time. The randomization of the black box construction is of the Monte-Carlo kind, that is with controllably high probability the procedures evaluating the GCD are correct at all input points. Finally, a Maple prototype implementation as well as our plans for developing a subsystem for manipulating multivariate polynomials and rational functions in black box representation are presented.

[1]  Erich Kaltofen,et al.  DSC: a system for distributed symbolic computation , 1991, ISSAC '91.

[2]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[3]  Dima Grigoriev,et al.  Algorithms for Computing Sparse Shifts for Multivariate Polynomials , 1995, ISSAC.

[4]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[5]  Erich Kaltofen,et al.  A Distributed Approach to Problem Solving in Maple , 1994 .

[6]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[7]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[8]  Erich Kaltofen,et al.  Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.

[9]  W. S. Brown,et al.  On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.

[10]  Bruce W. Char,et al.  GCDHEU: Heuristic Polynomial GCD Algorithm Based On Integer GCD Computation , 1984, J. Symb. Comput..

[11]  B. David Saunders,et al.  Sparse Polynomial Interpolation in Nonstandard Bases , 1995, SIAM J. Comput..

[12]  Erich Kaltofen Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.

[13]  Paul S. Wang,et al.  The EEZ-GCD algorithm , 1980, SIGS.

[14]  B. David Saunders,et al.  On computing sparse shifts for univariate polynomials , 1994, ISSAC '94.

[15]  Bruce W. Char,et al.  GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation , 1984, EUROSAM.

[16]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[17]  Paul S. Wang,et al.  Parallelization of the sparse modular GCD algorithm for multivariate polynomials on shared memory multiprocessors , 1994, ISSAC '94.

[18]  David Y. Y. Yun,et al.  The EZ GCD algorithm , 1973, ACM Annual Conference.

[19]  Stephen M. Watt,et al.  A first report on the A# compiler , 1994, ISSAC '94.

[20]  Erich Kaltofen,et al.  Modular rational sparse multivariate polynomial interpolation , 1990, ISSAC '90.

[21]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[22]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[23]  Erich Kaltofen,et al.  Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..

[24]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[25]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[26]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[27]  Erich Kaltofen,et al.  Process Scheduling in DSC and the Large Sparse Linear Systems Challenge , 1995, J. Symb. Comput..

[28]  Marek Karpinski,et al.  A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynominals , 1993, AAECC.

[29]  Erich Kaltofen,et al.  Process Scheduling in DSC and the Large Sparse Linear Systems Challenge , 1993, DISCO.

[30]  F. Drexler Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .