Mean stress effect correction in strain energy-based fatigue life prediction of metals

A new mean stress corrected strain energy model is proposed for fatigue life prediction of metals. Specifically, a mean stress sensitivity parameter is incorporated into modify the dissipated strain energy by introducing two mean stress correction factors. The prediction accuracy of the proposed model is compared with those of Walker, Smith–Watson–Topper, Morrow, and generalized damage parameter models by using 13 experimental data sets. All data points for each material are, respectively, fitted into a single mean stress corrected strain energy-life curve. More accurate predictions are achieved by the proposed model for all data sets with lower model prediction errors than others.

[1]  Daniel Kujawski,et al.  Effect of mean stress and ratcheting strain on fatigue life of steel , 1996 .

[2]  Chang-yu Zhou,et al.  Creep–fatigue interaction damage model and its application in modified 9Cr–1Mo steel , 2011 .

[3]  Mauro Madia,et al.  Structural integrity assessment of turbine discs in presence of potential defects: probabilistic analysis and implementation , 2015 .

[4]  Ne Dowling,et al.  Mean stress relaxation during cyclic straining of high strength aluminum alloys , 2009 .

[5]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[6]  G. Farrahi,et al.  Damage prediction for un-coated and coated aluminum alloys under thermal and mechanical fatigue loadings based on a modified plastic strain energy approach , 2015 .

[7]  Mohammad Azadi,et al.  A new energy‐based isothermal and thermo‐mechanical fatigue lifetime prediction model for aluminium–silicon–magnesium alloy , 2013 .

[8]  J. Morrow Cyclic Plastic Strain Energy and Fatigue of Metals , 1965 .

[9]  Hong-Zhong Huang,et al.  A Novel Viscosity-Based Model for Low Cycle Fatigue–Creep Life Prediction of High-Temperature Structures , 2012 .

[10]  F. Dunne,et al.  Comparative assessment of dissipated energy and other fatigue criteria , 2007 .

[11]  S. K. Koh,et al.  Mean stress effects on low cycle fatigue for a high strength steel , 1991 .

[12]  S. Park,et al.  Ratcheting behaviour and mean stress considerations in uniaxial low‐cycle fatigue of Inconel 718 at 649 °C , 2007 .

[13]  Yung-Li Lee,et al.  Assessment of the Mean-Stress Sensitivity Factor Method in Stress-Life Fatigue Predictions , 2013 .

[14]  Claude Bathias,et al.  Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon–manganese steel , 2011 .

[15]  K. Kluger Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress , 2015 .

[16]  Tianwen Zhao Fatigue of aluminum alloy 7075 -T651 , 2008 .

[17]  Darrell F. Socie,et al.  Review of Contemporary Approaches to Fatigue Damage Analysis , 1980 .

[18]  Daining Fang,et al.  Mean stress models for low-cycle fatigue of a nickel-base superalloy , 1994 .

[19]  Ali Fatemi,et al.  Effects of mean stress on fatigue behaviour of a hardened carbon steel , 1991 .

[20]  M. Kawakubo,et al.  Mean stress effect on fatigue strength of stainless steel , 2015 .

[21]  A. Fatemi,et al.  Fatigue Behavior of Stainless Steel 304L Including Strain Hardening, Prestraining, and Mean Stress Effects , 2010 .

[22]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[23]  Daniel Kujawski,et al.  A unified approach to mean stress effect on fatigue threshold conditions , 1995 .

[24]  C. Lissenden,et al.  Fatigue of beta titanium alloy at 20, 482 and 648 °C , 2004 .

[25]  Seung-Kee Koh,et al.  Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density , 2002 .

[26]  G. R. Halford,et al.  Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage , 1981 .

[27]  W. J. Ostergren,et al.  A DAMAGE FUNCTION AND ASSOCIATED FAILURE EQUATIONS FOR PREDICTING HOLD TIME AND FREQUENCY EFFECTS IN ELEVATED TEMPERATURE, LOW CYCLE FATIGUE , 1976 .

[28]  Tianwen Zhao,et al.  Fatigue of 7075-T651 aluminum alloy , 2008 .

[29]  Hong Hao,et al.  A study on the mean stress relaxation behavior of 2124-T851 aluminum alloy during low-cycle fatigue at different strain ratios , 2015 .

[30]  Ne Dowling,et al.  Mean stress effects in strain–life fatigue , 2009 .

[31]  Ayhan Ince,et al.  A modification of Morrow and Smith–Watson–Topper mean stress correction models , 2011 .

[32]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[33]  Campbell Laird,et al.  A new approach to predicting fatigue life behavior under the action of mean stresses , 1984 .

[34]  Qingyuan Wang,et al.  A very high cycle fatigue thermal dissipation investigation for titanium alloy TC4 , 2014 .

[35]  F. Ellyin,et al.  A General Fatigue Theory and Its Application to Out-of-Phase Cyclic Loading , 1993 .

[36]  Hong-Zhong Huang,et al.  An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory , 2013 .

[37]  Jun Zhang High Temperature Deformation and Fracture of Materials , 2010 .

[38]  Yaming Fan,et al.  A generalized hysteresis energy method for fatigue and creep-fatigue life prediction of 316L(N) , 2015 .

[39]  Onome Scott-Emuakpor,et al.  Extension of an energy-based life prediction method to low and combined cycle fatigue regimes , 2015 .

[40]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[41]  Huijun Li,et al.  Energy-based approach for the evaluation of low cycle fatigue behaviour of 2.25Cr–1Mo steel at elevated temperature , 2010 .

[42]  Fernand Ellyin,et al.  A Total Strain Energy Density Theory for Cumulative Fatigue Damage , 1988 .

[43]  Luca Susmel,et al.  Multiaxial fatigue limits and material sensitivity to non‐zero mean stresses normal to the critical planes , 2008 .

[44]  David W. Dean,et al.  A strain energy density method for the prediction of creep–fatigue damage in high temperature components , 2010 .

[45]  S. Pischinger,et al.  A new low cycle fatigue criterion for isothermal and out-of-phase thermomechanical loading , 2010 .

[46]  Shun-Peng Zhu,et al.  A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction , 2010 .

[47]  Shan-Tung Tu,et al.  Review of creep–fatigue endurance and life prediction of 316 stainless steels , 2015 .

[48]  Seong-Gu Hong,et al.  A new energy-based fatigue damage parameter in life prediction of high-temperature structural materials , 2008 .

[49]  Adam Niesłony,et al.  Mean stress effect correction using constant stress ratio S–N curves , 2013 .

[50]  H. Christ,et al.  The effect of mean stress on the high-temperature fatigue behaviour of SAE 1045 steel , 1997 .

[51]  S. M. Humayun Kabir,et al.  Evaluation of an energy-based fatigue approach considering mean stress effects , 2014 .

[52]  N. Dowling,et al.  Mean stress effects in stress-life fatigue and the Walker equation , 2009 .