Long-range mutual synchronization of spin Hall nano-oscillators

[1]  J. Prieto,et al.  High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque , 2016 .

[2]  T. Kuhn,et al.  Mutual synchronization of nanoconstriction-based spin Hall nano-oscillators through evanescent and propagating spin waves , 2016 .

[3]  J. Åkerman,et al.  Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. , 2016, Nature nanotechnology.

[4]  V. Tshitoyan,et al.  Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators , 2016, 1602.06710.

[5]  Ilya N. Krivorotov,et al.  Reduction of phase noise in nanowire spin orbit torque oscillators , 2015, Scientific Reports.

[6]  J. Sinova,et al.  Spin Hall effects , 2015 .

[7]  Johan Åkerman,et al.  Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study , 2015 .

[8]  J. Åkerman,et al.  CoFeB-Based Spin Hall Nano-Oscillators , 2014, IEEE Magnetics Letters.

[9]  Sergei Urazhdin,et al.  Nanoconstriction-based spin-Hall nano-oscillator , 2014 .

[10]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[11]  J Leuthold,et al.  Nanomagnonic devices based on the spin-transfer torque. , 2014, Nature nanotechnology.

[12]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[13]  Randy K. Dumas,et al.  Recent Advances in Nanocontact Spin-Torque Oscillators , 2014, IEEE Transactions on Magnetics.

[14]  S. Urazhdin,et al.  Spin Hall controlled magnonic microwaveguides , 2014 .

[15]  Anders Eklund,et al.  Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field , 2014 .

[16]  I. Krivorotov,et al.  Nanowire spin torque oscillator driven by spin orbit torques , 2014, Nature Communications.

[17]  S. Urazhdin,et al.  Synchronization of spin Hall nano-oscillators to external microwave signals , 2014, Nature Communications.

[18]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature materials.

[19]  D. Ralph,et al.  Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide , 2013, 1308.6357.

[20]  Jonathan Leliaert,et al.  The design and verification of MuMax 3 , 2014 .

[21]  J. Åkerman,et al.  Mutually synchronized bottom-up multi-nanocontact spin–torque oscillators , 2013, Nature Communications.

[22]  S. Yuasa,et al.  Large Emission Power over 2 µW with High Q Factor Obtained from Nanocontact Magnetic-Tunnel-Junction-Based Spin Torque Oscillator , 2013 .

[23]  S. Bonetti,et al.  Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. , 2013, Physical review letters.

[24]  S. Urazhdin,et al.  Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. , 2012, Physical review letters.

[25]  Johan Åkerman,et al.  Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks , 2013 .

[26]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[27]  F. Mancoff,et al.  Direct observation of a propagating spin wave induced by spin-transfer torque. , 2011, Nature nanotechnology.

[28]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[29]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[30]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[31]  Frank C Hoppensteadt,et al.  Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation , 2010, Nanotechnology.

[32]  Sergei Urazhdin,et al.  Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. , 2010, Nature materials.

[33]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[34]  W. Rippard,et al.  Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth , 2010, 1005.5372.

[35]  Johan Akerman,et al.  Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. , 2009, Physical review letters.

[36]  D. Mauri,et al.  Temporal coherence of MgO based magnetic tunnel junction spin torque oscillators. , 2009, Physical review letters.

[37]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[38]  Johan Åkerman,et al.  Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz , 2009 .

[39]  T. Devolder,et al.  Auto-oscillation and narrow spectral lines in spin-torque oscillators based on MgO magnetic tunnel junctions , 2008, 0810.0978.

[40]  A. N. Slavin,et al.  Temperature dependence of nonlinear auto-oscillator linewidths : Application to spin-torque nano-oscillators , 2008, 0806.4116.

[41]  W. Rippard,et al.  Developments in nano-oscillators based upon spin-transfer point-contact devices , 2008 .

[42]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[43]  M. D. Stiles,et al.  Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact , 2007, 0710.2890.

[44]  Joo-Von Kim,et al.  Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. , 2007, Physical review letters.

[45]  Bruno Azzerboni,et al.  Magnetization dynamics in nanocontact current controlled oscillators , 2007 .

[46]  J. Katine,et al.  Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. , 2006, Physical review letters.

[47]  Andrei Slavin,et al.  Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. , 2005, Physical review letters.

[48]  B. N. Engel,et al.  Phase-locking in double-point-contact spin-transfer devices , 2005, Nature.

[49]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[50]  P. Kabos,et al.  Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction , 2005, IEEE Transactions on Magnetics.

[51]  D. D. Awschalom,et al.  Observation of the Spin Hall Effect in Semiconductors , 2004, Science.

[52]  W. Rippard,et al.  Direct-current induced dynamics in Co90 Fe10/Ni80 Fe20 point contacts. , 2003, Physical review letters.

[53]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[54]  J. Bass,et al.  Generation and detection of phase-coherent current-driven magnons in magnetic multilayers , 2000, Nature.

[55]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[56]  John Casimir Slonczewski,et al.  Excitation of spin waves by an electric current , 1999 .

[57]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[58]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .