Temperature jump and thermal creep slip: Rigid sphere gas

The half‐space problems of temprature jump and thermal creep slip are solved for a rigid sphere gas based on the linearized Boltzmann equation. The SN method is used, and it is shown that accurate results for the jump/slip coefficients and the temperature, density, and velocity can be obtained in relatively short computational times. The previously reported variational results for the jump/slip coefficients are found to be quite good (1%–3% error). It is noted, however, that for rigid sphere molecules the Knudsen layer is somewhat thinner than for the BGK model. The creep slip coefficient is in good agreement with the experimental data of Annis [J. Chem. Phys. 57, 2898 (1972)], but for other quantities experimental data are needed.

[1]  M. Williams The thermophoretic force in the Knudsen regime near a wall , 1988 .

[2]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[3]  S. Loyalka Slip in the Thermal Creep Flow , 1971 .

[4]  S. Loyalka The Slip Problems for a Simple Gas , 1971 .

[5]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[6]  J. Ferziger,et al.  Model Dependence of the Temperature Slip Coefficient , 1968 .

[7]  J. R. Thomas,et al.  Half‐space problems in the kinetic theory of gases , 1973 .

[8]  M. Smoluchowski Zur Theorie der Wärmeleitung in verdünnten Gasen und der dabei auftretenden Druckkräfte , 1911 .

[9]  Propagation of Sound in a Gas of Rigid Spheres , 1962 .

[10]  M. M. R. Williams,et al.  Mathematical methods in particle transport theory , 1971 .

[11]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[12]  J. Ferziger,et al.  Model Dependence of the Slip Coefficient , 1967 .

[13]  S. K. Loyalka,et al.  Velocity profile in the Knudsen layer for the Kramer’s problem , 1975 .

[14]  B. Annis,et al.  Thermal Creep in Gases , 1972 .

[15]  E. Gross,et al.  Kinetic Theory of Linear Shear Flow , 1958 .

[16]  S. K. Loyalka,et al.  Approximate Method in the Kinetic Theory , 1971 .

[17]  S. Loyalka Momentum and Temperature‐Slip Coefficients with Arbitrary Accommodation at the Surface , 1968 .

[18]  Carlo Cercignani,et al.  Mathematical Methods in Kinetic Theory , 1970 .

[19]  Z. Alterman,et al.  SOLUTION OF THE BOLTZMANN-HILBERT INTEGRAL EQUATION II. THE COEFFICIENTS OF VISCOSITY AND HEAT CONDUCTION. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[20]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[21]  J. R. Thomas,et al.  Temperature‐jump problem with arbitrary accommodation , 1978 .