Querying industrial stream-temporal data: An ontology-based visual approach

An increasing number of sensors are being deployed in business-critical environments, systems, and equipment; and stream a vast amount of data. The operational efficiency and effectiveness of business processes rely on domain experts’ agility in interpreting data into actionable business information. A domain expert has extensive domain knowledge but not necessarily skills and knowledge on databases and formal query languages. Therefore, centralised approaches are often preferred. These require IT experts to translate the information needs of domain experts into extract-transform-load (ETL) processes in order to extract and integrate data and then let domain experts apply predefined analytics. Since such a workflow is too time intensive, heavy-weight and inflexible given the high volume and velocity of data, domain experts need to extract and analyse the data of interest directly. Ontologies, i.e., semantically rich conceptual domain models, present an intelligible solution by describing the domain of interest on a higher level of abstraction closer to the reality. Moreover, recent ontology-based data access (OBDA) technologies enable end users to formulate their information needs into queries using a set of terms defined in an ontology. Ontological queries could then be translated into SQL or some other database query languages, and executed over the data in its original place and format automatically. To this end, this article reports an ontology-based visual query system (VQS), namely OptiqueVQS, how it is extended for a stream-temporal query language called STARQL, a user experiment with the domain experts at Siemens AG, and STARQL’s query answering performance over a proof of concept implementation for PostgreSQL.

[1]  Alasdair J. G. Gray,et al.  Enabling Ontology-Based Access to Streaming Data Sources , 2010, SEMWEB.

[2]  Uzay Kaymak,et al.  RDF-GL: A SPARQL-Based Graphical Query Language for RDF , 2010, Emergent Web Intelligence.

[3]  Thomas Ertl,et al.  QueryVOWL: A Visual Query Notation for Linked Data , 2015, ESWC.

[4]  Yolande Berbers,et al.  Formal modelling, knowledge representation and reasoning for design and development of user-centric pervasive software: a meta-review , 2011, Int. J. Metadata Semant. Ontologies.

[5]  Ian Horrocks,et al.  Towards Analytics Aware Ontology Based Access to Static and Streaming Data , 2016, SEMWEB.

[6]  Daniel Tunkelang,et al.  Faceted Search , 2009, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[7]  Frederick Reiss,et al.  TelegraphCQ: continuous dataflow processing , 2003, SIGMOD '03.

[8]  Ian Horrocks,et al.  Ontology-based end-user visual query formulation: Why, what, who, how, and which? , 2016, Universal Access in the Information Society.

[9]  Ying Zhang,et al.  SRBench: A Streaming RDF/SPARQL Benchmark , 2012, SEMWEB.

[10]  Diego Calvanese Scalable End-User Access to Big Data , 2014 .

[11]  Evgeny Kharlamov,et al.  Faceted search over RDF-based knowledge graphs , 2016, J. Web Semant..

[12]  Ian Horrocks,et al.  Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users , 2015, Universal Access in the Information Society.

[13]  Pilar Barreiro,et al.  A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends , 2009, Sensors.

[14]  Mikhail R. Kogalovsky Ontology-based data access systems , 2012, Programming and Computer Software.

[15]  Danh Le Phuoc,et al.  A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data , 2011, SEMWEB.

[16]  Tiziana Catarci,et al.  What Happened When Database Researchers Met Usability , 2000, Inf. Syst..

[17]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[18]  Nikolas Mitrou,et al.  Bringing relational databases into the Semantic Web: A survey , 2012, Semantic Web.

[19]  Martin Serrano,et al.  Super Stream Collider-Linked Stream Mashups for Everyone ? , 2011 .

[20]  Benjamin B. Bederson,et al.  OZONE: a zoomable interface for navigating ontology information , 2002, AVI '02.

[21]  Nigel Shadbolt,et al.  A Visual Approach to Semantic Query Design Using a Web-Based Graphical Query Designer , 2008, EKAW.

[22]  Ying Xing,et al.  A Cooperative, Self-Configuring High-Availability Solution for Stream Processing , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[23]  S. Griffis EDITOR , 1997, Journal of Navigation.

[24]  M. Amparo Vila,et al.  Ontologies versus relational databases: are they so different? A comparison , 2012, Artificial Intelligence Review.

[25]  Ian Horrocks,et al.  Towards Query Formulation, Query-Driven Ontology Extensions in OBDA Systems , 2013, OWLED.

[26]  Diane J. Cook,et al.  Activity recognition on streaming sensor data , 2014, Pervasive Mob. Comput..

[27]  Evgeny Kharlamov,et al.  Towards Query Formulation and Query−Driven Ontology Extensions in OBDA , 2013 .

[28]  Enrico Motta,et al.  The usability of semantic search tools: a review , 2007, The Knowledge Engineering Review.

[29]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[30]  Evgeny Kharlamov,et al.  How Semantic Technologies Can Enhance Data Access at Siemens Energy , 2014, SEMWEB.

[31]  R. Winston Revie,et al.  Oil and Gas Pipelines , 2015 .

[32]  Ian Horrocks,et al.  OptiqueVQS: A visual query system over ontologies for industry , 2018, Semantic Web.

[33]  Daniel P. Miranker,et al.  Ultrawrap: SPARQL execution on relational data , 2013, J. Web Semant..

[34]  Richard G. Epstein,et al.  The TableTalk query language , 1991, J. Vis. Lang. Comput..

[35]  Siegfried Handschuh Konduit VQB: a Visual Query Builder for SPARQL on the Social Semantic Desktop , 2010 .

[36]  Victor Callaghan,et al.  Looking Back in Wonder: How Self-Monitoring Technologies Can Help Us Better Understand Ourselves , 2010, 2010 Sixth International Conference on Intelligent Environments.

[37]  Peter Haase,et al.  Optique: Zooming in on Big Data , 2015, Computer.

[38]  Tiziana Catarci,et al.  Visual Query Systems for Databases: A Survey , 1997, J. Vis. Lang. Comput..

[39]  Maurizio Lenzerini,et al.  MASTRO STUDIO: Managing Ontology-Based Data Access applications , 2013, Proc. VLDB Endow..

[40]  Xindong Wu,et al.  Combining proactive and reactive predictions for data streams , 2005, KDD '05.

[41]  JÜRGEN KRÄMER,et al.  Semantics and implementation of continuous sliding window queries over data streams , 2009, TODS.

[42]  Özgür L. Özçep,et al.  A Visual Query System for Stream Data Access over Ontologies , 2016, ESWC.

[43]  Ahmet Soylu,et al.  Qualifying Ontology-Based Visual Query Formulation , 2015, FQAS.

[44]  Margaret Burnett,et al.  End-User Development , 2013, Lecture Notes in Computer Science.

[45]  Daniele Braga,et al.  C-SPARQL: SPARQL for continuous querying , 2009, WWW '09.

[46]  Moshé M. Zloof Query-by-Example: A Data Base Language , 1977, IBM Syst. J..

[47]  Andre Bolles,et al.  Streaming SPARQL - Extending SPARQL to Process Data Streams , 2008, ESWC.

[48]  Alon Y. Halevy,et al.  Principles of Data Integration , 2012 .

[49]  Ian Horrocks,et al.  Ontology-Based Visual Query Formulation: An Industry Experience , 2015, ISVC.

[50]  Ian Horrocks,et al.  Towards Exploiting Query History for Adaptive Ontology-Based Visual Query Formulation , 2014, MTSR.

[51]  Stefano Zamagni,et al.  What is a Cooperative , 2010 .

[52]  Patrick De Causmaecker,et al.  Mashups and widget orchestration , 2011, MEDES.

[53]  Ralf Möller,et al.  A Stream-Temporal Query Language for Ontology Based Data Access , 2014, Description Logics.

[54]  Gary Marchionini,et al.  Find What You Need, Understand What You Find , 2007, Int. J. Hum. Comput. Interact..

[55]  Paolo Nesi,et al.  Tassonomy and Review of Big Data Solutions Navigation , 2013 .

[56]  Monica M. C. Schraefel,et al.  Connecting the Dots: A Multi-pivot Approach to Data Exploration , 2011, SEMWEB.

[57]  Óscar Corcho,et al.  RSP-QL Semantics: A Unifying Query Model to Explain Heterogeneity of RDF Stream Processing Systems , 2014, Int. J. Semantic Web Inf. Syst..

[58]  Özgür L. Özçep,et al.  Domain Experts Surfing on Stream Sensor Data over Ontologies , 2016, SEMPER@ESWC.

[59]  Jürgen Ziegler,et al.  Faceted Visual Exploration of Semantic Data , 2009, HCIV.

[60]  Ernesto Jiménez-Ruiz,et al.  Optique – Zooming In on Big Data Access , 2014 .

[61]  Meng Joo Er,et al.  Wireless Sensor Networks for Industrial Environments , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[62]  Sebastian Rudolph,et al.  EP-SPARQL: a unified language for event processing and stream reasoning , 2011, WWW.

[63]  Ralf Möller,et al.  OBDA for Temporal Querying and Streams , 2015, HiDeSt@KI.

[64]  Oszkar Ambrus Konduit VQB : a Visual Query Builder for SPARQL on the Social Semantic Desktop , 2010 .

[65]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[66]  Patrick De Causmaecker,et al.  Mashups by orchestration and widget-based personal environments: Key challenges, solution strategies, and an application , 2012, Program.

[67]  Ralf Möller,et al.  Ontology Based Data Access on Temporal and Streaming Data , 2014, Reasoning Web.

[68]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.