WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors

WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors.

[1]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[2]  Fashen Li,et al.  Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. , 2009, Chemical communications.

[3]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[4]  Gil S. Lee,et al.  Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices. , 2011, Nano letters.

[5]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[6]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[7]  Zhong Lin Wang,et al.  Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode , 2010, Advanced materials.

[8]  Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review , 1990 .

[9]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[10]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[11]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS Nano.

[12]  H. Alshareef,et al.  High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes , 2011 .

[13]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[14]  Mao-Sung Wu,et al.  Highly Regulated Electrodeposition of Needle-Like Manganese Oxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors , 2010 .

[15]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[16]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[17]  Thierry Brousse,et al.  Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte , 2008 .

[18]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[19]  Ting Yang,et al.  Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals , 2010 .

[20]  Xiaodong Li,et al.  In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors , 2011 .

[21]  Jie Cheng,et al.  Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities , 2009 .

[22]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[23]  C. Schulz,et al.  Synthesis of tailored WO3 and WOx (2.9 < x < 3) nanoparticles by adjusting the combustion conditions in a H2/O2/Ar premixed flame reactor , 2011 .

[24]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[25]  J. Ko,et al.  Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors , 2011 .

[26]  G. Rubloff,et al.  MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. , 2011, Physical chemistry chemical physics : PCCP.

[27]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[28]  Zhian Zhang,et al.  Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage , 2011 .

[29]  Jeng‐Kuei Chang,et al.  Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn–Co oxide electrodes , 2008 .

[30]  Songhun Yoon,et al.  Ordered mesoporous WO3−X possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells , 2010 .

[31]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[32]  X. G. Zhang,et al.  Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. , 2011, Nanoscale.

[33]  Zhong Lin Wang,et al.  Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. , 2011, Chemical communications.

[34]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[35]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[36]  A. Roberts,et al.  Controlled synthesis of ε-MnO2 and its application in hybrid supercapacitor devices , 2010 .

[37]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .