Combining Audio and Video by Dominance in Bimodal Emotion Recognition

We propose a novel bimodal emotion recognition approach by using the boosting-based framework, in which we can automatically determine the adaptive weights for audio and visual features. In this way, we balance the dominances of audio and visual features dynamically in feature-level to obtain better performance.

[1]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[2]  L. de Silva,et al.  Facial emotion recognition using multi-modal information , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..

[3]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[4]  Jianhua Tao,et al.  Features Importance Analysis for Emotional Speech Classification , 2005, ACII.

[5]  Björn W. Schuller,et al.  Hidden Markov model-based speech emotion recognition , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[6]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[7]  Zhigang Deng,et al.  Analysis of emotion recognition using facial expressions, speech and multimodal information , 2004, ICMI '04.

[8]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..

[9]  Thomas S. Huang,et al.  Final Report To NSF of the Planning Workshop on Facial Expression Understanding , 1992 .

[10]  Zhigang Deng,et al.  Emotion recognition based on phoneme classes , 2004, INTERSPEECH.

[11]  Tsutomu Miyasato,et al.  Multimodal human emotion/expression recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[12]  Tsutomu Miyasato,et al.  Bimodal Emotion Recognition by Man and Machine , 2007 .

[13]  Yue-Kai Huang,et al.  Visual/Acoustic Emotion Recognition , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[14]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..