Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli

Natural Caenorhabditis elegans isolates exhibit either social or solitary feeding on bacteria. We show here that social feeding is induced by nociceptive neurons that detect adverse or stressful conditions. Ablation of the nociceptive neurons ASH and ADL transforms social animals into solitary feeders. Social feeding is probably due to the sensation of noxious chemicals by ASH and ADL neurons; it requires the genes ocr-2 and osm-9, which encode TRP-related transduction channels, and odr-4 and odr-8, which are required to localize sensory chemoreceptors to cilia. Other sensory neurons may suppress social feeding, as social feeding in ocr-2 and odr-4 mutants is restored by mutations in osm-3, a gene required for the development of 26 ciliated sensory neurons. Our data suggest a model for regulation of social feeding by opposing sensory inputs: aversive inputs to nociceptive neurons promote social feeding, whereas antagonistic inputs from neurons that express osm-3 inhibit aggregation.

[1]  Phenomenon of Swarming in Nematodes , 1966, Nature.

[2]  N. A. Croll Sensory basis of activation in nematodes. , 1970, Experimental parasitology.

[3]  N. A. Croll The behaviour of nematodes , 1971 .

[4]  R. May,et al.  STABILITY IN INSECT HOST-PARASITE MODELS , 1973 .

[5]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[6]  M. Midgley Sociobiology. , 1984, Journal of medical ethics.

[7]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[8]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[9]  C. Kenyon,et al.  The nematode Caenorhabditis elegans. , 1988, Science.

[10]  Cori Bargmann,et al.  Chemosensory cell function in the behavior and development of Caenorhabditis elegans. , 1990, Cold Spring Harbor symposia on quantitative biology.

[11]  P. Grewal Influence of Bacteria and Temperature On the Reproduction of Caenorhabditis Elegans (Nematoda: Rhabditidae) Infesting Mushrooms (Agaricus Bispor Us) , 1991 .

[12]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[13]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Thomas,et al.  Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. , 1993, Genetics.

[15]  H. Horvitz,et al.  The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. , 1994, Genetics.

[16]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[17]  Cori Bargmann,et al.  Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans , 1995, Cell.

[18]  K. Nishikawa,et al.  Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. , 1995, Journal of molecular biology.

[19]  B. Shorrocks,et al.  Explaining local species diversity , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  D. Riddle,et al.  Control of C. elegans Larval Development by Neuronal Expression of a TGF-β Homolog , 1996, Science.

[21]  B. Stillman,et al.  Cold Spring Harbor Laboratory , 1995, Molecular medicine.

[22]  Wendy S. Schackwitz,et al.  Chemosensory Neurons Function in Parallel to Mediate a Pheromone Response in C. elegans , 1996, Neuron.

[23]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[24]  Cornelia I Bargmann,et al.  Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans , 1997, Cell.

[25]  Cori Bargmann,et al.  OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation inCaenorhabditis elegans , 1997, The Journal of Neuroscience.

[26]  Bernard J. Crespi,et al.  The Evolution of Social Behavior in Insects and Arachnids: Acknowledgements , 1997 .

[27]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[28]  D. Riddle C. Elegans II , 1998 .

[29]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[30]  Cornelia I Bargmann,et al.  Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein , 1998, Cell.

[31]  Cori Bargmann,et al.  The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons , 1998, Neuron.

[32]  L. Packer,et al.  The Evolution of Social Behavior in Insects and Arachnids , 1998 .

[33]  M. Futai,et al.  Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. , 1999, Neuroreport.

[34]  Cori Bargmann,et al.  Alternative olfactory neuron fates are specified by the LIM homeobox gene lim-4. , 1999, Genes & development.

[35]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[36]  A. Hudspeth,et al.  Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor , 2000, Cell.

[37]  L. Marroquin,et al.  Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. , 2000, Genetics.

[38]  F. Ausubel,et al.  A simple model host for identifying Gram-positive virulence factors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Ernfors,et al.  Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor , 2001, Nature.

[40]  D. Julius,et al.  The vanilloid receptor: a molecular gateway to the pain pathway. , 2001, Annual review of neuroscience.

[41]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[42]  R.,et al.  Natural Variation and Copulatory Plug Formation in Caenorhabditis eleguns , 2002 .

[43]  Mario de Bono,et al.  Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans , 2002, Nature.