The “Parahippocampal Place Area” Responds Preferentially to High Spatial Frequencies in Humans and Monkeys

A visual brain area that is thought to encode higher-level "place" information responds instead to lower-level "edge" information. A corresponding brain area is demonstrated in non-human species.

[1]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[2]  E Switkes,et al.  Spatial frequency specific interaction of dot patterns and gratings. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[4]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Thibos,et al.  Retinal limits to the detection and resolution of gratings. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[6]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[7]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[8]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[9]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[10]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[11]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[12]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[13]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[14]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[15]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ravi S. Menon,et al.  An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings , 2000, Current Biology.

[17]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[18]  G. Orban,et al.  Macaque Inferior Temporal Neurons Are Selective for Three-Dimensional Boundaries and Surfaces , 2001, The Journal of Neuroscience.

[19]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[20]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[21]  S Marrett,et al.  Local and global attention are mapped retinotopically in human occipital cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Kanwisher,et al.  A Cortical Area Selective for Visual Processing of the Human Body , 2001, Science.

[23]  I. Biederman,et al.  Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than to Metric Shape Differences , 2001, Journal of Cognitive Neuroscience.

[24]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[25]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[26]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[27]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[28]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[29]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[30]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[31]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[32]  Michael L. Mack,et al.  Identifying the Perceptual Dimensions of Visual Complexity of Scenes , 2004 .

[33]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[35]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[36]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[37]  M. Bar,et al.  The parahippocampal cortex mediates spatial and nonspatial associations. , 2007, Cerebral cortex.

[38]  H. Komatsu,et al.  Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex , 2007, Nature Neuroscience.

[39]  Andreas Wendel,et al.  Scene Categorization from Tiny Images , 2007 .

[40]  Aaron G. Filler,et al.  The Upright Ape: A New Origin of the Species , 2007 .

[41]  N. Kanwisher,et al.  A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. , 2008, Cerebral cortex.

[42]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[43]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[44]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[45]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[46]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[47]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[48]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[49]  Emily J. Ward,et al.  How reliable are visual context effects in the parahippocampal place area? , 2010, Cerebral cortex.