Structure of a Water Monolayer on the Anatase TiO 2 (101) Surface

Titanium dioxide (TiO$_2$) plays a central role in the study of artificial photosynthesis, owing to its ability to perform photocatalytic water splitting. Despite over four decades of intense research efforts in this area, there is still some debate over the nature of the first water monolayer on the technologically-relevant anatase TiO$_2$ (101) surface. In this work we use first-principles calculations to reverse-engineer the experimental high-resolution X-ray photoelectron spectra measured for this surface in [Walle et al., J. Phys. Chem. C 115, 9545 (2011)], and find evidence supporting the existence of a mix of dissociated and molecular water in the first monolayer. Using both semilocal and hybrid functional calculations we revise the current understanding of the adsorption energetics by showing that the energetic cost of water dissociation is reduced via the formation of a hydrogen-bonded hydroxyl-water complex. We also show that such a complex can provide an explanation of an unusual superstructure observed in high-resolution scanning tunneling microscopy experiments.

[1]  B. Hammer,et al.  Role of steps in the dissociative adsorption of water on rutile TiO2(110). , 2013, Physical review letters.

[2]  K. Fichthorn,et al.  ReaxFF Reactive Force Field Study of the Dissociation of Water on Titania Surfaces , 2013 .

[3]  Scheffler,et al.  Evidence for site-sensitive screening of core holes at the Si and Ge (001) surface. , 1993, Physical review letters.

[4]  F. Giustino,et al.  Quantum nuclear dynamics in the photophysics of diamondoids , 2013, Nature Communications.

[5]  U. Diebold,et al.  Influence of Subsurface Defects on the Surface Reactivity of TiO2: Water on Anatase (101) , 2010 .

[6]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[7]  D. P. Woodruff,et al.  Adsorption bond length for H2O on TiO2(110): a key parameter for theoretical understanding. , 2005, Physical review letters.

[8]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[9]  Giulia Galli,et al.  First Principles Simulations of the Infrared Spectrum of Liquid Water Using Hybrid Density Functionals. , 2011, Journal of chemical theory and computation.

[10]  Car,et al.  Theory of Si 2p core-level shifts at the Si(001)-SiO2 interface. , 1996, Physical review. B, Condensed matter.

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  A. Michaelides,et al.  Structure and dynamics of liquid water on rutile TiO2(110) , 2010 .

[13]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[14]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[15]  U. Diebold,et al.  Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO2(101) , 2003 .

[16]  Anders Sandell,et al.  Mixed Dissociative and Molecular Water Adsorption on Anatase TiO2(101) , 2011 .

[17]  Sean C. Smith,et al.  Titania-water interactions: a review of theoretical studies , 2010 .

[18]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[19]  S. Hüfner,et al.  Very High Resolution Photoelectron Spectroscopy , 2007 .

[20]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[21]  B. Hammer,et al.  Formation and diffusion of water dimers on rutile TiO2(110). , 2009, Physical review letters.

[22]  Annabella Selloni,et al.  Erratum: Structure and energetics of stoichiometric TiO2 anatase surfaces (Physical Review B (2001) 63 (155409)) , 2002 .

[23]  Dario Alfè,et al.  Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. , 2011, Physical review letters.

[24]  D. D. Beck,et al.  Catalytic reduction of carbon monoxide with hydrogen sulfide. 2. Adsorption of water and hydrogen sulfide on anatase and rutile , 1986 .

[25]  Valery Shklover,et al.  Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II) , 1998 .

[26]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[27]  Herve Toulhoat,et al.  Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and γ-alumina catalytic supports , 2004 .

[28]  H. Ogasawara,et al.  Water dissociation on Ru(001): an activated process. , 2004, Physical review letters.

[29]  P. Lindan,et al.  Exothermic water dissociation on the rutile TiO2(110) surface , 2005 .

[30]  J. Nørskov,et al.  Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). , 2001, Physical review letters.

[31]  Ulrike Diebold,et al.  Steps on anatase TiO2(101) , 2006, Nature materials.

[32]  O. Dulub,et al.  Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). , 2009, Nature materials.

[33]  Adam Heller,et al.  Photooxidative self-cleaning transparent titanium dioxide films on glass , 1995 .

[34]  Hamann,et al.  Theory of the scanning tunneling microscope. , 1985, Physical review. B, Condensed matter.

[35]  A. Pasquarello,et al.  Germanium core-level shifts at Ge/GeO2 interfaces through hybrid functionals , 2012 .

[36]  F. Manby,et al.  Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters. , 2012, The Journal of chemical physics.

[37]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[38]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[39]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[40]  B. D. Kay,et al.  Imaging water dissociation on TiO2(110): Evidence for inequivalent geminate OH groups. , 2006, The journal of physical chemistry. B.

[41]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[42]  Graeme Ackland,et al.  Practical methods in ab initio lattice dynamics , 1997 .

[43]  A. Arnau,et al.  Coordinated H-Bonding between Porphyrins on Metal Surfaces , 2012 .

[44]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[45]  Feliciano Giustino,et al.  O 1s core-level shifts at the anatase TiO 2 (101)/N3 photovoltaic interface: Signature of H-bonded supramolecular assembly , 2011 .