Computing the Primary Decomposition of Zero-dimensional Ideals
暂无分享,去创建一个
[1] Bernd Sturmfels. Grobner Bases - a Computational Approach to Commutative Algebra (Thomas Becker and Volker Weispfenning) , 1994, SIAM Rev..
[2] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[3] D. Eisenbud,et al. Direct methods for primary decomposition , 1992 .
[4] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[5] R. Tennant. Algebra , 1941, Nature.
[6] Gerhard Pfister,et al. Primary Decomposition: Algorithms and Comparisons , 1997, Algorithmic Algebra and Number Theory.
[7] Gerhard Hiss,et al. Algorithmic Algebra and Number Theory , 1999, Springer Berlin Heidelberg.
[8] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[9] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[10] Patrizia M. Gianni,et al. Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..