Invasive hematophagous arthropods and associated diseases in a changing world

[1]  Miaonan Li,et al.  Plasma levels of bactericidal/permeability-increasing protein correlate with systemic inflammation in acute coronary syndrome , 2024, Heliyon.

[2]  N. G. Taylor,et al.  Unevenly distributed biological invasion costs among origin and recipient regions , 2023, Nature Sustainability.

[3]  T. Høye,et al.  Climate Change Helps Polar Invasives Establish and Flourish: Evidence from Long-Term Monitoring of the Blowfly Calliphora vicina , 2023, Biology.

[4]  K. Seto,et al.  Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases , 2022, Nature Ecology & Evolution.

[5]  M. Kwak,et al.  The detection of three new Haemaphysalis ticks (Acari: Ixodidae) in Singapore and their potential threat for public health, companion animals, and wildlife , 2022, Acarologia.

[6]  S. Ritchie,et al.  A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance , 2022, Parasites & vectors.

[7]  M. Koopmans,et al.  One Health: A new definition for a sustainable and healthy future , 2022, PLoS pathogens.

[8]  Jenica M. Allen,et al.  Global environmental changes more frequently offset than intensify detrimental effects of biological invasions , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Yuki Haba,et al.  Origin and status of Culex pipiens mosquito ecotypes , 2022, Current Biology.

[10]  Ross N. Cuthbert,et al.  Biological invasion costs reveal insufficient proactive management worldwide. , 2022, The Science of the total environment.

[11]  F. Allerberger,et al.  First records of Aedes pulcritarsis (Rondani, 1872) (Diptera: Culicidae) in Austria , 2022, Parasitology Research.

[12]  Stefan Schindler,et al.  Future Representation of Species’ Climatic Niches in Protected Areas: A Case Study With Austrian Endemics , 2021, Frontiers in Ecology and Evolution.

[13]  Hazel R. Parry,et al.  Simulating an invasion: unsealed water storage (rainwater tanks) and urban block design facilitate the spread of the dengue fever mosquito, Aedes aegypti, in Brisbane, Australia , 2021, Biological Invasions.

[14]  R. Wolfe,et al.  The evolution of saltmarsh mosquito control water management practices relative to coastal resiliency in the Mid-Atlantic and northeastern United States , 2021, Wetlands Ecology and Management.

[15]  J. Braun,et al.  Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa , 2021, Scientific Reports.

[16]  N. G. Taylor,et al.  Economic costs of invasive alien species across Europe , 2021, NeoBiota.

[17]  Felipe J. Colón-González,et al.  Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study , 2021, The Lancet. Planetary health.

[18]  A. Trájer Aedes aegypti in the Mediterranean container ports at the time of climate change: A time bomb on the mosquito vector map of Europe , 2021, Heliyon.

[19]  Ross N. Cuthbert,et al.  Are the “100 of the world’s worst” invasive species also the costliest? , 2021, Biological Invasions.

[20]  T. Șuleșco,et al.  The first record of the invasive mosquito species Aedes albopictus in Chişinӑu, Republic of Moldova, 2020 , 2021, Parasites & Vectors.

[21]  Ross N. Cuthbert,et al.  Managing biological invasions: the cost of inaction , 2021, Biological Invasions.

[22]  C. Bradshaw,et al.  High and rising economic costs of biological invasions worldwide , 2021, Nature.

[23]  I. Csabai,et al.  Deep learning identification for citizen science surveillance of tiger mosquitoes , 2021, Scientific Reports.

[24]  T. Backeljau,et al.  First record of the West Nile virus bridge vector Culex modestus Ficalbi (Diptera: Culicidae) in Belgium, validated by DNA barcoding. , 2021, Zootaxa.

[25]  N. G. Taylor,et al.  Global economic costs of aquatic invasive alien species. , 2021, The Science of the total environment.

[26]  M. Gardiner,et al.  Artificial light at night alters the seasonal responses of biting mosquitoes. , 2021, Journal of insect physiology.

[27]  F. Dowell,et al.  High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance , 2021, Communications biology.

[28]  W. Takken,et al.  Monitoring mosquito nuisance for the development of a citizen science approach for malaria vector surveillance in Rwanda , 2021, Malaria journal.

[29]  L. Gilbert The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. , 2021, Annual review of entomology.

[30]  M. Cameron,et al.  The use of molecular xenomonitoring for surveillance of mosquito-borne diseases , 2020, Philosophical Transactions of the Royal Society B.

[31]  Andrew M. Liebhold,et al.  Four priority areas to advance invasion science in the face of rapid environmental change , 2020, Environmental Reviews.

[32]  R. Raffa,et al.  The Zika virus: Lurking behind the COVID‐19 pandemic? , 2020, Journal of clinical pharmacy and therapeutics.

[33]  I. Caldwell,et al.  The influence of vector-borne disease on human history: socio-ecological mechanisms. , 2020, Ecology letters.

[34]  Brian J. Johnson,et al.  Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program , 2020, bioRxiv.

[35]  Nadja Pernat,et al.  Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany , 2020, Journal of Applied Ecology.

[36]  A. Failloux,et al.  The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission , 2020, Frontiers in Microbiology.

[37]  Jeremy M. Cohen,et al.  Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C , 2020, eLife.

[38]  C. Moyes,et al.  A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk , 2020, Proceedings of the National Academy of Sciences.

[39]  L. Nuninger,et al.  InvaCost, a public database of the economic costs of biological invasions worldwide , 2020, Scientific Data.

[40]  W. Takken,et al.  Use of semiochemicals for surveillance and control of hematophagous insects , 2020, Chemoecology.

[41]  R. Bertrand,et al.  Species better track climate warming in the oceans than on land , 2020, Nature Ecology & Evolution.

[42]  Martin A. Nuñez,et al.  Invasion Science and the Global Spread of SARS-CoV-2 , 2020, Trends in Ecology & Evolution.

[43]  T. Iwamura,et al.  Accelerating invasion potential of disease vector Aedes aegypti under climate change , 2020, Nature Communications.

[44]  M. C. Urban Climate-tracking species are not invasive , 2020, Nature Climate Change.

[45]  Jenica M. Allen,et al.  Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts , 2020, Nature Climate Change.

[46]  G. Marini,et al.  Dynamics and Distribution of the Invasive Mosquito Aedes koreicus in a Temperate European City , 2020, International journal of environmental research and public health.

[47]  H. Jactel,et al.  A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae) , 2020, Biological Invasions.

[48]  John R. U. Wilson Definitions Can Confuse: Why the “Neonative” Neologism Is Bad for Conservation , 2020 .

[49]  Ross N. Cuthbert,et al.  Cattle-induced eutrophication favours disease-vector mosquitoes. , 2020, The Science of the total environment.

[50]  O. Kotavaara,et al.  Accessibility analysis in evaluating exposure risk to an ecosystem disservice , 2019, Applied Geography.

[51]  R. Wasserman,et al.  Human Activities Attract Harmful Mosquitoes in a Tropical Urban Landscape , 2019, EcoHealth.

[52]  A. Joyce,et al.  Environmental and Sociological Factors Associated with the Incidence of West Nile Virus Cases in the Northern San Joaquin Valley of California, 2011–2015 , 2019, Vector borne and zoonotic diseases.

[53]  P. Armbruster,et al.  Differences in Responses to Urbanization Between Invasive Mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in Their Native Range, Japan , 2019, Journal of Medical Entomology.

[54]  D. Richardson,et al.  A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change , 2019, BioScience.

[55]  L. Johnson,et al.  Thermal biology of mosquito‐borne disease , 2019, Ecology letters.

[56]  Rolando A. Gittens,et al.  High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama , 2019, Parasites & Vectors.

[57]  A. Wilke,et al.  Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes , 2019, PloS one.

[58]  F. Darriet [When Urban and Agricultural Activities Favor the Proliferation of Mosquito Nuisance and Vectors of Pathogens to Humans]. , 2019, Bulletin de la Societe de pathologie exotique.

[59]  Tim M. Blackburn,et al.  Risks of Biological Invasion on the Belt and Road , 2019, Current Biology.

[60]  J. Powell,et al.  Recent History of Aedes aegypti: Vector Genomics and Epidemiology Records , 2018, Bioscience.

[61]  Anne E Jones,et al.  Impact of recent and future climate change on vector‐borne diseases , 2018, Annals of the New York Academy of Sciences.

[62]  J. Powell,et al.  Aedes aegypti in the Black Sea: recent introduction or ancient remnant? , 2018, Parasites & Vectors.

[63]  D. Borras,et al.  Water associated with residential areas and tourist resorts is the key predictor of Asian tiger mosquito presence on a Mediterranean island , 2018, Medical and veterinary entomology.

[64]  E. Gould,et al.  What Does the Future Hold for Yellow Fever Virus? (I) , 2018, Genes.

[65]  M. Carvalho,et al.  Dispersion and oviposition of Aedes albopictus in a Brazilian slum: Initial evidence of Asian tiger mosquito domiciliation in urban environments , 2018, PloS one.

[66]  S. Morand,et al.  The One Health Concept: 10 Years Old and a Long Road Ahead , 2018, Front. Vet. Sci..

[67]  F. Darriet Synergistic Effect of Fertilizer and Plant Material Combinations on the Development of Aedes aegypti (Diptera: Culicidae) and Anopheles gambiae (Diptera: Culicidae) Mosquitoes , 2017, Journal of Medical Entomology.

[68]  Jonathan E. Suk,et al.  Vector-borne diseases and climate change: a European perspective , 2017, FEMS microbiology letters.

[69]  F. Bartumeus,et al.  Direct Evidence of Adult Aedes albopictus Dispersal by Car , 2017, Scientific Reports.

[70]  J. Hemingway,et al.  An economic evaluation of vector control in the age of a dengue vaccine , 2017, PLoS neglected tropical diseases.

[71]  C. Moyes,et al.  Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans , 2017, PLoS neglected tropical diseases.

[72]  Brett R. Scheffers,et al.  Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being , 2017, Science.

[73]  R. Lidskog,et al.  Mosquitoes as a threat to humans and the community: the role of place identity, social norms, environmental concern and ecocentric values in public risk perception , 2017 .

[74]  M. M. Vale,et al.  Evaluation of the impacts of climate change on disease vectors through ecological niche modelling , 2016, Bulletin of Entomological Research.

[75]  A. Nok,et al.  Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action , 2016, Tropical Medicine and Health.

[76]  S. Cunze,et al.  Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature niches in Europe , 2016, Parasites & Vectors.

[77]  A. Peterson,et al.  Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis , 2016, PloS one.

[78]  E. Muturi,et al.  Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? , 2016, Parasites & Vectors.

[79]  L. R. Lindsay,et al.  Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. , 2016, Trends in parasitology.

[80]  J. Stanaway,et al.  The global economic burden of dengue: a systematic analysis. , 2016, The Lancet. Infectious diseases.

[81]  P. Armbruster Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America , 2016, Journal of Medical Entomology.

[82]  Jonathan Lenoir,et al.  Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation , 2016, Biological Invasions.

[83]  J. Hemingway,et al.  Averting a malaria disaster: will insecticide resistance derail malaria control? , 2016, The Lancet.

[84]  E. Hart From Field to Plate: The Colonial Livestock Trade and the Development of an American Economic Culture , 2016 .

[85]  R. Tesh,et al.  Insect-specific viruses and their potential impact on arbovirus transmission. , 2015, Current opinion in virology.

[86]  David L. Smith,et al.  The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus , 2015, eLife.

[87]  M. Madder,et al.  Increased detection of Aedes albopictus in Belgium: no overwintering yet, but an intervention strategy is still lacking , 2015, Parasitology Research.

[88]  Bethany L. Woodworth,et al.  Avian malaria in Hawaiian forest birds: infection and population impacts across species and elevations , 2015 .

[89]  R. Ostfeld,et al.  Climate change and Ixodes tick-borne diseases of humans , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  A. Meirland Predicting the effects of sea level rise on salt marsh plant communities: does vegetation age matter more than sea level? , 2015 .

[91]  D. Suckling Can we replace toxicants, achieve biosecurity, and generate market position with semiochemicals? , 2015, Front. Ecol. Evol..

[92]  K. Medley,et al.  Human‐aided and natural dispersal drive gene flow across the range of an invasive mosquito , 2015, Molecular ecology.

[93]  A. Adalja,et al.  An estimate of the global health care and lost productivity costs of dengue. , 2014, Vector borne and zoonotic diseases.

[94]  Guofa Zhou,et al.  Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship , 2014, PLoS neglected tropical diseases.

[95]  P. Genovesi,et al.  Biological invaders are threats to human health: an overview , 2014 .

[96]  A. Callaghan,et al.  British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology , 2014, PloS one.

[97]  M. Pascual,et al.  Altitudinal Changes in Malaria Incidence in Highlands of Ethiopia and Colombia , 2014, Science.

[98]  D. Strickman,et al.  Quantifying the Impact of Mosquitoes on Quality of Life and Enjoyment of Yard and Porch Activities in New Jersey , 2014, PloS one.

[99]  E. Scholte,et al.  No evidence for the persistence of Schmallenberg virus in overwintering mosquitoes , 2014, Medical and veterinary entomology.

[100]  A. Covich,et al.  Nutrient Enrichment Affects Immature Mosquito Abundance and Species Composition in Field-Based Mesocosms in the Coastal Plain of Georgia , 2014, Environmental entomology.

[101]  C. Massart La maladie de Lyme entre cadrage infectieux, vectoriel et zoonotique : vers une écologisation des problèmes sanitaires ? , 2013 .

[102]  W. Thuiller,et al.  Will climate change promote future invasions? , 2013, Global change biology.

[103]  R. Lidskog,et al.  To spray or not to spray : the discursive construction of contested environmental issues in the news media , 2013 .

[104]  E. Scholte,et al.  Development of guidelines for the surveillance of invasive mosquitoes in Europe , 2013, Parasites & Vectors.

[105]  C. Claeys,et al.  The Spread of Asian Tiger Mosquitoes and Related Health Risks Along the French Riviera: An Analysis of Reactions and Concerns Amongst the Local Population , 2013 .

[106]  H. Delatte,et al.  Evidence of Habitat Structuring Aedes albopictus Populations in Réunion Island , 2013, PLoS neglected tropical diseases.

[107]  C. Boëte,et al.  The Flying Public Health Tool: Genetically Modified Mosquitoes and Malaria Control , 2013 .

[108]  S. Randolph,et al.  Drivers, dynamics, and control of emerging vector-borne zoonotic diseases , 2012, The Lancet.

[109]  D. Strickman,et al.  Larval Mosquito Habitat Utilization and Community Dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae) , 2012, Journal of medical entomology.

[110]  N. Besansky,et al.  Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae , 2012, PloS one.

[111]  H. Zeller,et al.  A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. , 2012, Vector borne and zoonotic diseases.

[112]  M. Rossignol,et al.  The combination of NPK fertilizer and deltamethrin insecticide favors the proliferation of pyrethroid-resistant Anopheles gambiae (Diptera: Culicidae) , 2012, Parasite.

[113]  Andrew P. Morse,et al.  Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios , 2012, Journal of The Royal Society Interface.

[114]  L. Eisen,et al.  Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden , 2012, Parasites & Vectors.

[115]  J. Pergl,et al.  Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas , 2011, PloS one.

[116]  Runzhi Zhang,et al.  Does Global Warming Increase Establishment Rates of Invasive Alien Species? A Centurial Time Series Analysis , 2011, PloS one.

[117]  Petr Pyšek,et al.  A proposed unified framework for biological invasions. , 2011, Trends in ecology & evolution.

[118]  H. Brun-Hansen,et al.  Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit , 2011, Parasites & Vectors.

[119]  E. Lindgren,et al.  The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. , 2011, Ticks and tick-borne diseases.

[120]  M. Vilà,et al.  Socioeconomic legacy yields an invasion debt , 2010, Proceedings of the National Academy of Sciences.

[121]  Caroline W. Kabaria,et al.  The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis , 2010, Parasites & Vectors.

[122]  L. F. Chaves,et al.  Unforeseen Costs of Cutting Mosquito Surveillance Budgets , 2010, PLoS neglected tropical diseases.

[123]  D. Fontenille,et al.  Malaria risk in Corsica, former hot spot of malaria in France , 2010, Malaria Journal.

[124]  R. Hu,et al.  [Effects of long-term fertilization on paddy soils organic nitrogen, microbial biomass, and microbial functional diversity]. , 2010, Ying yong sheng tai xue bao = The journal of applied ecology.

[125]  F. Chandre,et al.  [Influence of plant matter and NPK fertilizer on the biology of Aedes aegypti (Diptera: Culicidae)]. , 2010, Parasite.

[126]  Carine Baxerres,et al.  Quelles ressources familiales financent la santé des enfants , 2010 .

[127]  P. Robbins,et al.  A Bug's Life and the Spatial Ontologies of Mosquito Management , 2010 .

[128]  D. Boccolini,et al.  A 2-year entomological study of potential malaria vectors in central Italy. , 2009, Vector borne and zoonotic diseases.

[129]  B. Evengård,et al.  Climate change, its impact on human health in the Arctic and the public health response to threats of emerging infectious diseases , 2009, Global health action.

[130]  M. Setbon,et al.  The role of environmental and individual factors in the social epidemiology of chikungunya disease on Mayotte Island. , 2009, Health & place.

[131]  S. Gopalan,et al.  Household economic impact of an emerging disease in terms of catastrophic out-of-pocket health care expenditure and loss of productivity: investigation of an outbreak of chikungunya in Orissa, India. , 2009, Journal of vector borne diseases.

[132]  V. Sambri,et al.  The Chikungunya epidemic in Italy and its repercussion on the blood system. , 2008, Blood transfusion = Trasfusione del sangue.

[133]  A. Moro,et al.  Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. , 2008 .

[134]  Robert R Parmenter,et al.  The spread of invasive species and infectious disease as drivers of ecosystem change , 2008 .

[135]  F. Darriet,et al.  Influence des engrais de type NPK sur l’oviposition d’Aedes aegypti , 2008 .

[136]  D. Vezzani Review: Artificial container‐breeding mosquitoes and cemeteries: a perfect match , 2007, Tropical medicine & international health : TM & IH.

[137]  D. Vuuren,et al.  Will climate change affect ectoparasite species ranges , 2006 .

[138]  Andrew J Tatem,et al.  Global traffic and disease vector dispersal. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[139]  R. May,et al.  Plagues and peoples , 2006, IUBMB life.

[140]  J. Patz,et al.  Impact of regional climate change on human health , 2005, Nature.

[141]  S Harrus,et al.  Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. , 2005, International journal for parasitology.

[142]  L. P. Lounibos,et al.  Ecology of invasive mosquitoes: effects on resident species and on human health: Invasive mosquitoes , 2005 .

[143]  J. Stahl Biodiversité du paludisme dans le monde. Éditions John Libbey Eurotext. J. Mouchet, P. Carnevale, M. Coosemans, J. Julvez, S. Manuin, D. Richard-Lenoble, J. Sircoulon. , 2005 .

[144]  F. Jongejan,et al.  The global importance of ticks , 2004, Parasitology.

[145]  M. Wikelski,et al.  Galápagos Birds and Diseases: Invasive Pathogens as Threats for Island Species , 2004 .

[146]  G. Killeen,et al.  Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? , 2002, The Lancet. Infectious diseases.

[147]  C. Claeys-mekdade Les controverses relatives à la démoustication de la Camargue: rapports à l'animal et au territoire , 2002 .

[148]  E. Lindgren,et al.  Tick-borne encephalitis in Sweden and climate change , 2001, The Lancet.

[149]  Daniel R. O’Leary,et al.  The outbreak of West Nile virus infection in the New York City area in 1999. , 2001, The New England journal of medicine.

[150]  E. Lindgren,et al.  Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. , 1999, Environmental health perspectives.

[151]  Angus S. McDonald,et al.  A cross-cultural study of animal fears. , 1998, Behaviour research and therapy.

[152]  J. Mouchet,et al.  La diffusion anthropique des arthropodes vecteurs de maladie dans le monde , 1995 .

[153]  R. Hopcroft The Social Origins of Agrarian Change in Late Medieval England , 1994, American Journal of Sociology.

[154]  W. Hawley,et al.  Aedes albopictus in North America: probable introduction in used tires from northern Asia. , 1987, Science.

[155]  D. Gubler,et al.  A field trial of competitive displacement of Aedes polynesiensis by Aedes albopictus on a Pacific atoll. , 1976, The American journal of tropical medicine and hygiene.

[156]  C. Smith The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. , 1956, The Journal of tropical medicine and hygiene.

[157]  Malgorzata A. Dereniowska,et al.  A heuristic for innovative invasive species management actions and strategies , 2022, Ecology and Society.

[158]  Ross N. Cuthbert,et al.  Economic costs of invasive alien species in the Mediterranean basin , 2021 .

[159]  Ross N. Cuthbert,et al.  Economic costs of biological invasions in the United Kingdom , 2021 .

[160]  Ross N. Cuthbert,et al.  Biological Invasion Costs Reveal Insufficient Proactive Management Worldwide , 2021, SSRN Electronic Journal.

[161]  D. Gubler,et al.  Human Diseases Associated With Vectors (Arthropods in Disease Transmission) , 2020 .

[162]  A. Roques,et al.  Testing multi-lure traps for surveillance of native and alien longhorn beetles (Coleoptera, Cerambycidae) at ports of entry and in forests in Austria , 2020 .

[163]  C. Claeys,et al.  Climate Change, Biological Invasion and Emerging Diseases: a Longitudinal Sociological Study Monitoring the Spread of Asian Tiger Mosquitoes in a European Region , 2016 .

[164]  Uli Beisel The Blue Warriors : Ecology, Participation and Public Health in Malaria Control Experiments in Ghana , 2015 .

[165]  F. Darriet Des moustiques et des hommes : Chronique d’une pullulation annoncée , 2014 .

[166]  R. Evans European Centre for Disease Prevention and Control. , 2014, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[167]  D. Fontenille,et al.  La lutte antivectorielle en France , 2009 .

[168]  Vincent Huneau Étude socio-environnementale de la présence des moustiques dans l'est du Golfe du Morbihan (56, France) , 2008 .

[169]  J. Powell,et al.  Historical analysis of a near disaster: Anopheles gambiae in Brazil. , 2008, The American journal of tropical medicine and hygiene.

[170]  V. Corbel,et al.  [Aedes aegypti oviposition in response to NPK fertilizers]. , 2008, Parasite.

[171]  J. Bozonnet De la conscience écologique aux pratiques , 2007 .

[172]  M. Bigras-Poulin,et al.  Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. , 2006, International journal for parasitology.

[173]  J. Pádua,et al.  The environmentalism of the poor - a study of ecological conflicts and valuation , 2005 .

[174]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[175]  L. P. Lounibos,et al.  Invasions by insect vectors of human disease. , 2002, Annual review of entomology.

[176]  Joan Martínez-Alier The Environmentalism of the Poor , 2002 .

[177]  R. Nichols,et al.  Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations , 1999, Heredity.

[178]  Reviewers' comments. , 1973, Journal of applied behavior analysis.