Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are established using the concept of kernelization. Existing results show that if NP is not contained in coNP/poly, no efficient preprocessing algorithm can reduce n-variable instances of CNF-SAT with d literals per clause, to equivalent instances with $O(n^{d-e})$ bits for any e > 0. For the Not-All-Equal SAT problem, a compression to size $O(n^{d-1})$ exists. We put these results in a common framework by analyzing the compressibility of binary CSPs. We characterize constraint types based on the minimum degree of multivariate polynomials whose roots correspond to the satisfying assignments, obtaining (nearly) matching upper and lower bounds in several settings. Our lower bounds show that not just the number of constraints, but also the encoding size of individual constraints plays an important role. For example, for Exact Satisfiability with unbounded clause length it is possible to efficiently reduce the number of constraints to n+1, yet no polynomial-time algorithm can reduce to an equivalent instance with $O(n^{2-e})$ bits for any e > 0, unless NP is a subset of coNP/poly.

[1]  Stefan Kratsch,et al.  Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems , 2010, TOCT.

[2]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[3]  Dániel Marx,et al.  Constraint Satisfaction Parameterized by Solution Size , 2011, ICALP.

[4]  Hans L. Bodlaender,et al.  Kernelization, Exponential Lower Bounds , 2016, Encyclopedia of Algorithms.

[5]  Dániel Marx,et al.  Constraint Satisfaction Parameterized by Solution Size , 2014, SIAM J. Comput..

[6]  Bart M. P. Jansen,et al.  Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT , 2015, Algorithmica.

[7]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[8]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[9]  Bart M. P. Jansen,et al.  On Sparsification for Computing Treewidth , 2013, Algorithmica.

[10]  Saket Saurabh,et al.  Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.

[11]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.

[12]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[13]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[14]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[15]  R. Downey,et al.  Kernelization Lower Bounds , 2013 .

[16]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1994, computational complexity.

[17]  Stefan Kratsch,et al.  Preprocessing of Min Ones Problems: A Dichotomy , 2010, ICALP.

[18]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..

[19]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[20]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[21]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[22]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[23]  Shachar Lovett,et al.  Nonclassical polynomials as a barrier to polynomial lower bounds , 2014, Electron. Colloquium Comput. Complex..

[24]  D. M. Barrington Some problems involving Razborov-Smolensky polynomials , 1992 .

[25]  Bart M. P. Jansen Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight , 2016, STACS.

[26]  Stefan Kratsch,et al.  Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems , 2010, MFCS.

[27]  Leslie Hogben,et al.  Handbook of Linear Algebra : Handbook of Linear Algebra , 2013 .

[28]  Tobias Mömke,et al.  Complexity and Approximability of Parameterized MAX-CSPs , 2015, Algorithmica.

[29]  L. Hogben Handbook of Linear Algebra , 2006 .

[30]  Stefan Kratsch,et al.  Recent developments in kernelization: A survey , 2014, Bull. EATCS.

[31]  Dieter van Melkebeek,et al.  Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses , 2014, JACM.

[32]  Gregory Gutin Kernelization, Constraint Satisfaction Problems Parameterized above Average , 2016, Encyclopedia of Algorithms.

[33]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[34]  Gábor Tardos,et al.  A lower bound on the mod 6 degree of the OR function , 1998, computational complexity.