暂无分享,去创建一个
[1] Stefan Kratsch,et al. Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems , 2010, TOCT.
[2] Saket Saurabh,et al. Incompressibility through Colors and IDs , 2009, ICALP.
[3] Dániel Marx,et al. Constraint Satisfaction Parameterized by Solution Size , 2011, ICALP.
[4] Hans L. Bodlaender,et al. Kernelization, Exponential Lower Bounds , 2016, Encyclopedia of Algorithms.
[5] Dániel Marx,et al. Constraint Satisfaction Parameterized by Solution Size , 2014, SIAM J. Comput..
[6] Bart M. P. Jansen,et al. Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT , 2015, Algorithmica.
[7] Richard Beigel,et al. The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[8] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[9] Bart M. P. Jansen,et al. On Sparsification for Computing Treewidth , 2013, Algorithmica.
[10] Saket Saurabh,et al. Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.
[11] David A. Mix Barrington,et al. Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.
[12] Saket Saurabh,et al. Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.
[13] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[14] Dániel Marx,et al. Kernelization of packing problems , 2012, SODA.
[15] R. Downey,et al. Kernelization Lower Bounds , 2013 .
[16] David A. Mix Barrington,et al. Representing Boolean functions as polynomials modulo composite numbers , 1994, computational complexity.
[17] Stefan Kratsch,et al. Preprocessing of Min Ones Problems: A Dichotomy , 2010, ICALP.
[18] Lance Fortnow,et al. Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..
[19] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[20] Anders Yeo,et al. Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..
[21] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[22] Michael R. Fellows,et al. Fundamentals of Parameterized Complexity , 2013 .
[23] Shachar Lovett,et al. Nonclassical polynomials as a barrier to polynomial lower bounds , 2014, Electron. Colloquium Comput. Complex..
[24] D. M. Barrington. Some problems involving Razborov-Smolensky polynomials , 1992 .
[25] Bart M. P. Jansen. Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight , 2016, STACS.
[26] Stefan Kratsch,et al. Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems , 2010, MFCS.
[27] Leslie Hogben,et al. Handbook of Linear Algebra : Handbook of Linear Algebra , 2013 .
[28] Tobias Mömke,et al. Complexity and Approximability of Parameterized MAX-CSPs , 2015, Algorithmica.
[29] L. Hogben. Handbook of Linear Algebra , 2006 .
[30] Stefan Kratsch,et al. Recent developments in kernelization: A survey , 2014, Bull. EATCS.
[31] Dieter van Melkebeek,et al. Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses , 2014, JACM.
[32] Gregory Gutin. Kernelization, Constraint Satisfaction Problems Parameterized above Average , 2016, Encyclopedia of Algorithms.
[33] Stefan Kratsch,et al. Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..
[34] Gábor Tardos,et al. A lower bound on the mod 6 degree of the OR function , 1998, computational complexity.