MAXENPER: a program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test

The maximum entropy spectral estimator is widely used because of its high spectral resolution, but it lacks an easy procedure for evaluating the statistical significance of the spectral estimates. We implemented the non-parametric computer intensive permutation test in order to evaluate the statistical significance of the maximum entropy spectral estimates. There is the possibility of choosing between an underlying red or white noise in the permutation procedure. Two case studies, with a long and a short time series, illustrate the performance of the method.

[1]  J. Mélice,et al.  A strategy for frequency spectra of quaternary climate records , 1991 .

[2]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[3]  Eulogio Pardo-Igúzquiza,et al.  The permutation test as a non-parametric method for testing the statistical significance of power spectrum estimation in cyclostratigraphic research , 2000 .

[4]  Graham P. Weedon,et al.  Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles , 2003 .

[5]  N. Andersen On the calculation of filter coefficients for maximum entropy spectral analysis , 1974 .

[6]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[7]  Kirk A. Maasch,et al.  Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records , 1992 .

[8]  Walther Schwarzacher,et al.  Cyclostratigraphy and the Milankovitch theory , 1993 .

[9]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[10]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[11]  E. Pardo-Igu zquizaa,et al.  A library of computer programs for assisting teaching and research in cyclostratigraphic analysis , 1999 .

[12]  Maurizio Ripepe,et al.  Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England) , 1992 .

[13]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[14]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[15]  Linus Schrage,et al.  A More Portable Fortran Random Number Generator , 1979, TOMS.

[16]  Francisco J. Rodr The permutation test as a non-parametric method for testing the statistical signi¢cance of power spectrum estimation in cyclostratigraphic research , 2000 .

[17]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[18]  Eulogio Pardo-Igúzquiza,et al.  A library of computer programs for assisting teaching and research in cyclostratigraphic analysis , 2000 .

[19]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[20]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[21]  W. D. Ray,et al.  Spectral Analysis and Time Series. Vol. 1: Univariate Series. , 1982 .

[22]  David A Hodell,et al.  Response of deep ocean circulation to initiation of northern hemisphere glaciation (3–2 MA) , 1992 .

[23]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .