Stereo R-CNN Based 3D Object Detection for Autonomous Driving

We propose a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery. Our method, called Stereo R-CNN, extends Faster R-CNN for stereo inputs to simultaneously detect and associate object in left and right images. We add extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box. We then recover the accurate 3D bounding box by a region-based photometric alignment using left and right RoIs. Our method does not require depth input and 3D position supervision, however, outperforms all existing fully supervised image-based methods. Experiments on the challenging KITTI dataset show that our method outperforms the state-of-the-art stereo-based method by around 30% AP on both 3D detection and 3D localization tasks. Code will be made publicly available.

[1]  Dushyant Rao,et al.  Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Alex Kendall,et al.  End-to-End Learning of Geometry and Context for Deep Stereo Regression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[4]  Shaojie Shen,et al.  Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving , 2018, ECCV.

[5]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[7]  Jana Kosecka,et al.  3D Bounding Box Estimation Using Deep Learning and Geometry , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yann LeCun,et al.  Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches , 2015, J. Mach. Learn. Res..

[9]  Sanja Fidler,et al.  3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Konrad Schindler,et al.  Are Cars Just 3D Boxes? Jointly Estimating the 3D Shape of Multiple Objects , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Yong-Sheng Chen,et al.  Pyramid Stereo Matching Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  James M. Rehg,et al.  3D-RCNN: Instance-Level 3D Object Reconstruction via Render-and-Compare , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[18]  Ingmar Posner,et al.  Voting for Voting in Online Point Cloud Object Detection , 2015, Robotics: Science and Systems.

[19]  Bin Yang,et al.  Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Bo Li,et al.  3D fully convolutional network for vehicle detection in point cloud , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Roberto Cipolla,et al.  Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  Bin Xu,et al.  Multi-level Fusion Based 3D Object Detection from Monocular Images , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[25]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Thierry Chateau,et al.  Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  K. Madhava Krishna,et al.  Reconstructing Vechicles from a Single Image: Shape Priors for Road Scene Understanding , 2016, ArXiv.

[30]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..