Mechanical Strength and Electrical Conductivity of Cu–In Solid Solution Alloy Wires

[1]  H. Hyodo,et al.  Age-Induced Precipitating and Strengthening Behaviors in a Cu–Ni–Al Alloy , 2021, Metallurgical and Materials Transactions A.

[2]  G. Sundararajan,et al.  Role of stacking fault energy (SFE) on the high strain rate deformation of cold sprayed Cu and Cu–Al alloy coatings , 2021 .

[3]  C. Barr,et al.  Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures , 2021 .

[4]  Je-hyun Lee,et al.  Alloy design strategies to increase strength and its trade-offs together , 2020 .

[5]  N. Tsuji,et al.  Two-stage Hall-Petch relationship in Cu with recrystallized structure , 2020 .

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  B. Kumar,et al.  Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion , 2019, Journal of Alloys and Compounds.

[8]  S. Semboshi,et al.  Effect of Composition on the Strength and Electrical Conductivity of Cu-Ti Binary Alloy Wires Fabricated by Aging and Intense Drawing , 2019, Metallurgical and Materials Transactions A.

[9]  S. Semboshi,et al.  High Strength and High Electrical Conductivity Cu-Ti Alloy Wires Fabricated by Aging and Severe Drawing , 2018, Metallurgical and Materials Transactions A.

[10]  Q. Lei,et al.  Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity , 2017 .

[11]  H. Hahn,et al.  High-pressure torsion driven phase transformations in Cu–Al–Ni shape memory alloys , 2017 .

[12]  S. Onaka,et al.  Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing , 2015 .

[13]  C. Koch,et al.  Enhancement of mechanical properties of low stacking fault energy brass processed by cryorolling followed by short-annealing , 2015 .

[14]  Q. Lei,et al.  A new ultrahigh strength Cu-Ni-Si alloy , 2013 .

[15]  Lei Wei,et al.  Experimental microindentation of pure copper subjected to severe plastic deformation by combined tension-torsion , 2013 .

[16]  K. Maki,et al.  Solid-solution copper alloys with high strength and high electrical conductivity , 2013 .

[17]  Xie Guoliang,et al.  The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy , 2012 .

[18]  Qingyuan Wang,et al.  The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing , 2012 .

[19]  W. Marsden I and J , 2012 .

[20]  R. Scattergood,et al.  Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys , 2011 .

[21]  Zhe-feng Zhang,et al.  Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing , 2011 .

[22]  E. Lavernia,et al.  The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion , 2010 .

[23]  K. Weidenmann,et al.  Mechanical behaviour of diamond reinforced metals , 2009 .

[24]  Zujian Wang,et al.  Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing , 2009 .

[25]  X. Liao,et al.  Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys , 2008 .

[26]  T. Langdon,et al.  Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys , 2008 .

[27]  X. Liao,et al.  Influence of stacking fault energy on nanostructure formation under high pressure torsion , 2005 .

[28]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[29]  K. Vecchio,et al.  The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery , 2001 .

[30]  M. Fine,et al.  Electrical conductivity versus strength in a precipitation hardened alloy , 1992 .

[31]  K. Nakanishi,et al.  Analysis of the Grain Size Dependence of the Yield Stress in Copper-Aluminum and Copper-Nickel Alloys , 1974 .

[32]  H. Yoshinaga Measurements of the Anisotropy of the Dislocation Resistivity in Au, Ag, and Cu , 1966, December 1.

[33]  A. Götte,et al.  Metall , 1897 .