Biotechnological potential of agro-industrial residues. I: sugarcane bagasse

Abstract Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as sugarcane bagasse. Sugarcane bagasse, which is a complex material, is the major by-product of the sugar cane industry. It contains about 50% cellulose, 25% hemicellulose and 25% lignin. Due to its abundant availability, it can serve as an ideal substrate for microbial processes for the production of value-added products. Attempts have been made to produce from bagasse substrate protein-enriched animal feed, enzymes, amino acids, organic acids and compounds of pharmaceutical importance, etc. Often, a pre-treatment process has resulted in improved substrate utilization by the microbes. Application of solid-state fermentation technology could be an attractive possibility for such bioconversions. This article reviews the recent developments on processes and products developed for the value addition of sugarcane bagasse through the biotechnological means. Emphasis has been given on more recent developments of the past 8–10 years.

[1]  D. Kamra,et al.  Biodelignification of sugarcane bagasse by Pleurotus florida and Pleurotus cornucopiae. , 1994 .

[2]  Cateryna Aiello,et al.  Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414 , 1996 .

[3]  R. Katzen,et al.  Ethanol from lignocellulosic wastes with utilization of recombinant bacteria , 1994, Applied biochemistry and biotechnology.

[4]  S. El-Sayed,et al.  Bioconversion of sugarcane bagasse into a protein-rich product by white rot fungus , 1994 .

[5]  Anju Pal,et al.  Cellulases and β-glucosidase from Aspergillus niger and saccharification of some cellulosic wastes , 1993 .

[6]  S. Kilian,et al.  Chemostat cultivation of Candida blankii on sugar cane bagasse hemicellulose hydrolysate , 1992, Biotechnology and bioengineering.

[7]  A. K. Puniya,et al.  Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi , 1995 .

[8]  Silvio S. Silva,et al.  Xylitol production by Candida guillermondii as an approach for the utilization of agroindustrial residues , 1995 .

[9]  I. M. Mancilha,et al.  Xylitol recovery from fermented sugarcane bagasse hydrolyzate , 1995 .

[10]  G. Saucedo-Castañeda,et al.  Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation , 1996 .

[11]  M. Felipe,et al.  Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate , 1997, Applied biochemistry and biotechnology.

[12]  B. K. Lonsane,et al.  Efficient leaching of cellulases produced by Trichoderma harzianum in solid state fermentation , 1992 .

[13]  M. Pal,et al.  Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor , 1995, World journal of microbiology & biotechnology.

[14]  L. Ingram,et al.  Saccharification and fermentation of Sugar Cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway , 1994, Biotechnology and bioengineering.

[15]  K. E. Aidoo,et al.  Solid Substrate Fermentations , 1982 .

[16]  Ashok Pandey,et al.  Effect of particle size of substrate of enzyme production in solid-state fermentation , 1991 .

[17]  B. K. Lonsane,et al.  Potential of ensiling for efficient management of spent residue from solid state fermentation system , 1992 .

[18]  A. Tomasini,et al.  Gibberellic acid production using different solid-state fermentation systems , 1997 .

[19]  R. Tengerdy,et al.  Cellulase production by mixed fungi in solid-substrate fermentation of bagasse , 1995, World journal of microbiology & biotechnology.

[20]  C. S. Chen,et al.  Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for ethanol production by yeast , 1993, Applied biochemistry and biotechnology.

[21]  M. Felipe,et al.  Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production: Effect of pH , 1997 .

[22]  J. Smith,et al.  Effect of chemical pretreatments on the fermentation and ultimate digestibility of bagasse by Phanerochaete chrysosporium , 1988 .

[23]  K. Prabhu,et al.  Studies on cellulolytic enzyme production by Trichoderma sp. utilising bagasse , 1983 .

[24]  Inês Conceição Roberto,et al.  Utilization of sugar cane bagasse hemicellulosic hydrolysate by pichia stipitis for the production of ethanol , 1991 .

[25]  E. Villegas,et al.  Influence of mold growth on the pressure drop in aerated solid state fermentors , 1993, Biotechnology and bioengineering.

[26]  Poonam Singh Nee Nigam,et al.  PROCESSES FOR FERMENTATIVE PRODUCTION OF XYLITOL - A SUGAR SUBSTITUTE , 1995 .

[27]  M. Vitolo,et al.  Xylitol formation by Candida guilliermondii grown in a cane bagasse hemicellulosic hydrolysate: Effect of aeration and inoculum adaptation , 1996 .

[28]  E. Villegas,et al.  Growth of Candida utilis in solid state fermentation. , 1993, Biotechnology advances.

[29]  A. Pessoa,et al.  Cultivation of Candida tropicalis in sugar cane hemicellulosic hydrolyzate for microbial protein production , 1996 .

[30]  Pierre Christen,et al.  Fruity aroma production in solid state fermentation by Ceratocystis fimbriata : influence of the substrate type and the presence of precursors , 1997 .

[31]  P. Nigam,et al.  Effect of cultural factors on cellulase biosynthesis in submerged bagasse fermentation by basidiomycetes cultures , 1991 .

[32]  A. M. Azzam,et al.  Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation , 1989 .

[33]  A. Jain Production of xylanase by thermophilic melanocarpus albomyces IIS-68 , 1995 .

[34]  Poonam Singh Nee Nigam,et al.  Investigation of some factors important for solid-state fermentation of sugar cane bagasse for animal feed production , 1990 .

[35]  A. Iyo,et al.  Protein enrichment of lignocellulose resulting from the growth of two Streptomyces strains , 1991, World journal of microbiology & biotechnology.

[36]  H. Steinmüller,et al.  Conversion of Lignocellulosic Material to Ethanol Influence of Raw Material Yield and Hemicellulose Utilization on Sales Price of Ethanol , 1988, 1988.

[37]  P. du Toit,et al.  Sugar cane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and amino acid composition. , 1984, Biotechnology and bioengineering.

[38]  Ashok Pandey,et al.  Solid-state fermentation , 1994 .

[39]  M. Felipe,et al.  Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolysate , 1998, Journal of basic microbiology.

[40]  Y. Chisti,et al.  Fermentation of cellulosic materials to mycoprotein foods. , 1993, Biotechnology advances.

[41]  M. Felipe,et al.  Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii for xylitol production , 1991 .

[42]  G. Zayed,et al.  Studies on the production and kinetic aspects of single cell protein from sugar cane bagasse saccharified by Aspergillus Niger , 1992 .

[43]  S. Chiu,et al.  Production of pigments byMonascus purpureus using sugar-cane bagasse in roller bottle cultures , 1992, World journal of microbiology & biotechnology.

[44]  M. Felipe,et al.  Pretreatment of Sugarcane Bagasse Hemicellulose Hydrolysate for Xylitol Production by Candida guilliermondii , 1998 .

[45]  G. Vogels,et al.  Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates , 1993, Applied biochemistry and biotechnology.

[46]  S. Revah,et al.  in Solid State Fermentation , 1992 .

[47]  A. M. Azzam,et al.  Pretreatments of agrocellulosic waste for microbial biomass production with a defined mixed culture. , 1992 .

[48]  G. Viniegra-González,et al.  Absorbed substrate fermentation for pectinase production with Aspergillus niger , 1994 .

[49]  M. Felipe,et al.  Biotechnological production of xylitol from agroindustrial residues , 1998, Applied biochemistry and biotechnology.

[50]  S. Sato,et al.  Evaluation of sugar cane hemicellulose hydrolyzate for cultivation of yeasts and filamentous fungi , 1997, Journal of Industrial Microbiology and Biotechnology.

[51]  M. A. Ferrara,et al.  Enhancement of enzymatic hydrolysis of sugar cane bagasse by steam explosion pretreatment. , 1987, Biotechnology and bioengineering.

[52]  H. K. Manonmani,et al.  Studies on the conversion of cellulose hydrolysate into citric acid by Aspergillus niger , 1987 .

[53]  B. S. Purchase Products from sugarcane. , 1995 .

[54]  K. Chaudhary,et al.  A solid state fermentation method for citric acid production using sugar cane bagasse , 1975 .

[55]  B. K. Lonsane,et al.  Spectra of ergot alkaloids produced by Claviceps purpurea 1029c in solid-state fermentation system: influence of the composition of liquid medium used for impregnating sugar-cane pith bagasse , 1993 .

[56]  Datta Madamwar,et al.  Solid State Fermentation of Lignocellulosic Waste for Cellulase and β‐Glucosidase Production by Cocultivation ofAspergillus ellipticusand Aspergillus fumigatus , 1997 .

[57]  G. Nanda,et al.  Xylanase and beta-xylosidase production by Aspergillus ochraceus during growth on lignocelluloses. , 1988, Biotechnology and bioengineering.

[58]  R. Prade,et al.  Characterization of xylanase production by a local isolate of Penicillium janthinellum , 1993 .

[59]  P. Nigam,et al.  Solid‐state (substrate) fermentation systems and their applications in biotechnology , 1994 .

[60]  Ashok Pandey,et al.  Cellulase and ligninase production by basidiomycete culture in solid-state fermentation , 1987 .

[61]  D. Madamwar,et al.  Production of cellulolytic enzymes by coculturing ofAspergillus ellipticus andAspergillus fumigatus grown on bagasse under solid state fermentation , 1997 .

[62]  J. Donker,et al.  Effect of alkaline hydrogen peroxide treatment on cell wall composition and digestion kinetics of sugarcane residues and wheat straw. , 1992, Journal of animal science.

[63]  G. Viniegra-González,et al.  Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentrations , 1996, World journal of microbiology & biotechnology.

[64]  Ashok Pandey,et al.  Aspects of fermenter design for solid-state fermentations , 1991 .

[65]  M. Felipe,et al.  Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii , 1997, Journal of Industrial Microbiology and Biotechnology.

[66]  H. O. D. op den Camp,et al.  Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. , 1992, Journal of general microbiology.

[67]  C. Soccol,et al.  Solid state fermentation for the production of industrial enzymes , 1999 .

[68]  R. Rodríguez-Vázquez,et al.  Sugarcane bagasse pith dry pretreatment for single cell protein production , 1992 .

[69]  J. Breccia,et al.  Degradation of sugar cane bagasse by several white‐rot fungi , 1997 .

[70]  B. Behera,et al.  Solid-state fermentation of new substrates for production of cellulase and other biopolymer-hydrolyzing enzymes , 1995 .

[71]  J. Barrios-González,et al.  Effect of particle size, packing density and agitation on penicillin production in solid state fermentation. , 1993, Biotechnology advances.

[72]  M. Klibanov Biotechnological potential of the enzyme hydrogenase , 1983 .

[73]  Ashok Pandey,et al.  Recent process developments in solid-state fermentation , 1992 .

[74]  M. Raimbault,et al.  Solid-state culture of Aspergillus niger on support , 1988 .