Multi-body dynamics simulation of geometrically exact Cosserat rods

In this paper, we present a viscoelastic rod model that is suitable for fast and accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (‘stiff’ dof), bending and torsion (‘soft’ dof). For inner dissipation, a consistent damping potential proposed by Antman is chosen. We parametrise the rotational dof by unit quaternions and directly use the quaternionic evolution differential equation for the discretisation of the Cosserat rod curvature.The discrete version of our rod model is obtained via a finite difference discretisation on a staggered grid. After an index reduction from three to zero, the right-hand side function f and the Jacobian ∂f/∂(q,v,t) of the dynamical system $\dot{q}=v$, $\dot{v}=f(q,v,t)$ is free of higher algebraic (e.g. root) or transcendental (e.g. trigonometric or exponential) functions and, therefore, cheap to evaluate. A comparison with Abaqus finite element results demonstrates the correct mechanical behaviour of our discrete rod model. For the time integration of the system, we use well established stiff solvers like Radau5 or Daspk. As our model yields computational times within milliseconds, it is suitable for interactive applications in ‘virtual reality’ as well as for multi-body dynamics simulation.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[5]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[6]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[7]  P. Hartman Ordinary Differential Equations , 1965 .

[8]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[9]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[10]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[11]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[12]  E. Reissner,et al.  On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .

[13]  Stuart S. Antman,et al.  Kirchhoff’s problem for nonlinearly elastic rods , 1974 .

[14]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[15]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[16]  J. Maddocks Stability of nonlinearly elastic rods , 1984 .

[17]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[18]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[19]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[21]  Werner C. Rheinboldt,et al.  Nonholonomic motion of rigid mechanical systems from a DAE viewpoint , 1987 .

[22]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[23]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[24]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[25]  James F. Blinn,et al.  Physically-based modeling: past, present, and future , 1989, SIGGRAPH '89.

[26]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[27]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[28]  E. Dill,et al.  Kirchhoff's theory of rods , 1992 .

[29]  A. Ibrahimbegovic,et al.  Finite element analysis of linear and non‐linear planar deformations of elastic initially curved beams , 1993 .

[30]  C. Lubich Integration of stiff mechanical systems by Runge-Kutta methods , 1993 .

[31]  S. Antman Nonlinear problems of elasticity , 1994 .

[32]  A. Ibrahimbegovic On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements , 1995 .

[33]  S. S. Antman,et al.  Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods , 1996 .

[34]  John H. Maddocks,et al.  An impetus-striction simulation of the dynamics of an elastica , 1996 .

[35]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[36]  K. Hjelmstad Fundamentals of Structural Mechanics , 1996 .

[37]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[38]  M. Crisfield Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .

[39]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[40]  S. Kehrbaum,et al.  Elastic rods, rigid bodies, quaternions and the last quadrature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Werner Schiehlen,et al.  Multibody System Dynamics: Roots and Perspectives , 1997 .

[42]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[43]  J. Orlik Homogenization for viscoelasticity of the integral type with aging and shrinkage , 1998 .

[44]  Frank-Thomas Lentes,et al.  Three-dimensional radiative heat transfer in glass cooling processes , 1998 .

[45]  M. Crisfield,et al.  Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Alain Goriely,et al.  Towards a classification of Euler–Kirchhoff filaments , 1999 .

[47]  A. Bobenko,et al.  Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .

[48]  M. Junk On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes , 1999 .

[49]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[50]  A. Becker A Review on Image Distortion Measures , 2000 .

[51]  Numerical Analysis of Flexible Multibody Systems , 2001 .

[52]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[53]  Douglas Roble,et al.  Math in the Entertainment Industry , 2001 .

[54]  H. Neunzert »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann« , 2001 .

[55]  A. Zemitis On interaction of a liquid film with an obstacle , 2002 .

[56]  P. Betsch,et al.  A DAE Approach to Flexible Multibody Dynamics , 2002 .

[57]  P. Betsch,et al.  Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .

[58]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[59]  M. Krekel Optimal Portfolios With A Loan Dependent Credit Spread , 2002 .

[60]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[61]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[62]  S. Kruse,et al.  On the Pricing of Forward Starting Options under Stochastic Volatility , 2003 .

[63]  H. Trinkaus,et al.  knowCube for MCDM – Visual and Interactive Support for Multicriteria Decision Making , 2003 .

[64]  V. Starikovicius,et al.  The multiphase flow and heat transfer in porous media , 2003 .

[65]  Ignacio Romero,et al.  The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .

[66]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[67]  J. Linn On the Frame — Invariant Description of the Phase Space of the Folgar–Tucker Equation , 2004 .

[68]  H. Neunzert,et al.  Mathematics as a Technology: Challenges for the next 10 Years , 2004 .

[69]  J. Orlik Homogenization for contact problems with periodically rough surfaces , 2004 .

[70]  John H. Maddocks,et al.  Kirchhoff’s Problem of Helical Equilibria of Uniform Rods , 2004 .

[71]  D. Kehrwald Parallel lattice Boltzmann simulation of complex flows , 2004 .

[72]  T. Hanne Eine Übersicht zum Scheduling von Baustellen , 2005 .

[73]  N. Ettrich Generation of surface elevation models for urban drainage simulation , 2005 .

[74]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[75]  Brian Osserman DIFFERENTIAL FORMS , 2005 .

[76]  Nicole Marheineke,et al.  Fiber Dynamics in Turbulent Flows: General Modeling Framework , 2006, SIAM J. Appl. Math..

[77]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[78]  K. Marti Book Review: Werner Schiehlen und Peter Eberhard, Technische Dynamik. Modelle für Regelung und Simulation , 2006 .

[79]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[80]  A. Schwab,et al.  HOW TO DRAW EULER ANGLES AND UTILIZE EULER PARAMETERS , 2006 .

[81]  A. Naumovich On a Finite Volume Discretization of the Three-dimensional Biot Poroelasticity , 2006 .

[82]  Th. Hanne,et al.  Applying multiobjective evolutionary algorithms in industrial projects , 2006 .

[83]  H. Knaf Kernel Fisher discriminant functions – a concise and rigorous introduction , 2007 .

[84]  A. Unterreiter,et al.  Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning , 2007 .

[85]  Oliver Wirjadi,et al.  Survey of 3d image segmentation methods , 2007 .

[86]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[87]  Martin Arnold,et al.  Numerical methods for simulation in applied dynamics , 2008 .

[88]  O. Bauchau,et al.  Interpolation of finite rotations in flexible multi-body dynamics simulations , 2008 .

[89]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[90]  J. Linn,et al.  Simulation of quasistatic deformations using discrete rod models , 2008 .

[91]  Robert Bohlin,et al.  Fast simulation of quasistatic rod deformations for vr applications , 2008 .

[92]  Gloria Platero,et al.  Progress in industrial mathematics at ECMI 2006 , 2008 .

[93]  Anton Winterfeld,et al.  Application of general semi-infinite programming to lapidary cutting problems , 2008, Eur. J. Oper. Res..

[94]  Peter Betsch,et al.  Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration , 2009 .

[95]  Oliver Sander,et al.  Geodesic finite elements for Cosserat rods , 2009 .

[97]  Miran Saje,et al.  The quaternion-based three-dimensional beam theory , 2009 .

[98]  Holger Lang,et al.  Lagrangian field theory in space and time for geometrically exact Cosserat rods , 2009 .

[99]  Olivier A. Bauchau,et al.  Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations , 2009 .

[100]  Olivier A. Bauchau,et al.  Flexible multibody dynamics , 2010 .

[101]  Sigrid Leyendecker,et al.  A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria , 2011 .

[102]  Martin Arnold,et al.  Numerical aspects in the dynamic simulation of geometrically exact rods , 2012 .

[103]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[104]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.