Multi-body dynamics simulation of geometrically exact Cosserat rods
暂无分享,去创建一个
[1] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[2] G. Kirchhoff,et al. Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[5] G. M.,et al. A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.
[6] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[7] P. Hartman. Ordinary Differential Equations , 1965 .
[8] G. Cowper. The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .
[9] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[10] M. Bampton,et al. Coupling of substructures for dynamic analyses. , 1968 .
[11] Stuart S. Antman,et al. The Theory of Rods , 1973 .
[12] E. Reissner,et al. On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .
[13] Stuart S. Antman,et al. Kirchhoff’s problem for nonlinearly elastic rods , 1974 .
[14] G. Strang,et al. The solution of nonlinear finite element equations , 1979 .
[15] L. Petzold. A description of dassl: a differential/algebraic system solver , 1982 .
[16] J. Maddocks. Stability of nonlinearly elastic rods , 1984 .
[17] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[18] Ken Shoemake,et al. Animating rotation with quaternion curves , 1985, SIGGRAPH.
[19] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[20] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[21] Werner C. Rheinboldt,et al. Nonholonomic motion of rigid mechanical systems from a DAE viewpoint , 1987 .
[22] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[23] M. Géradin,et al. A beam finite element non‐linear theory with finite rotations , 1988 .
[24] Ernst Hairer,et al. The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .
[25] James F. Blinn,et al. Physically-based modeling: past, present, and future , 1989, SIGGRAPH '89.
[26] Ahmed A. Shabana,et al. Dynamics of Multibody Systems , 2020 .
[27] Cv Clemens Verhoosel,et al. Non-Linear Finite Element Analysis of Solids and Structures , 1991 .
[28] E. Dill,et al. Kirchhoff's theory of rods , 1992 .
[29] A. Ibrahimbegovic,et al. Finite element analysis of linear and non‐linear planar deformations of elastic initially curved beams , 1993 .
[30] C. Lubich. Integration of stiff mechanical systems by Runge-Kutta methods , 1993 .
[31] S. Antman. Nonlinear problems of elasticity , 1994 .
[32] A. Ibrahimbegovic. On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements , 1995 .
[33] S. S. Antman,et al. Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods , 1996 .
[34] John H. Maddocks,et al. An impetus-striction simulation of the dynamics of an elastica , 1996 .
[35] Joel Langer,et al. Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..
[36] K. Hjelmstad. Fundamentals of Structural Mechanics , 1996 .
[37] Michael T. Heath,et al. Scientific Computing , 2018 .
[38] M. Crisfield. Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .
[39] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[40] S. Kehrbaum,et al. Elastic rods, rigid bodies, quaternions and the last quadrature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[41] Werner Schiehlen,et al. Multibody System Dynamics: Roots and Perspectives , 1997 .
[42] J. Kuipers. Quaternions and Rotation Sequences , 1998 .
[43] J. Orlik. Homogenization for viscoelasticity of the integral type with aging and shrinkage , 1998 .
[44] Frank-Thomas Lentes,et al. Three-dimensional radiative heat transfer in glass cooling processes , 1998 .
[45] M. Crisfield,et al. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[46] Alain Goriely,et al. Towards a classification of Euler–Kirchhoff filaments , 1999 .
[47] A. Bobenko,et al. Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .
[48] M. Junk. On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes , 1999 .
[49] Horst W. Hamacher,et al. Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .
[50] A. Becker. A Review on Image Distortion Measures , 2000 .
[51] Numerical Analysis of Flexible Multibody Systems , 2001 .
[52] M. Géradin,et al. Flexible Multibody Dynamics: A Finite Element Approach , 2001 .
[53] Douglas Roble,et al. Math in the Entertainment Industry , 2001 .
[54] H. Neunzert. »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann« , 2001 .
[55] A. Zemitis. On interaction of a liquid film with an obstacle , 2002 .
[56] P. Betsch,et al. A DAE Approach to Flexible Multibody Dynamics , 2002 .
[57] P. Betsch,et al. Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .
[58] Horst W. Hamacher,et al. Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .
[59] M. Krekel. Optimal Portfolios With A Loan Dependent Credit Spread , 2002 .
[60] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[61] O. Bauchau,et al. The Vectorial Parameterization of Rotation , 2003 .
[62] S. Kruse,et al. On the Pricing of Forward Starting Options under Stochastic Volatility , 2003 .
[63] H. Trinkaus,et al. knowCube for MCDM – Visual and Interactive Support for Multicriteria Decision Making , 2003 .
[64] V. Starikovicius,et al. The multiphase flow and heat transfer in porous media , 2003 .
[65] Ignacio Romero,et al. The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .
[66] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[67] J. Linn. On the Frame — Invariant Description of the Phase Space of the Folgar–Tucker Equation , 2004 .
[68] H. Neunzert,et al. Mathematics as a Technology: Challenges for the next 10 Years , 2004 .
[69] J. Orlik. Homogenization for contact problems with periodically rough surfaces , 2004 .
[70] John H. Maddocks,et al. Kirchhoff’s Problem of Helical Equilibria of Uniform Rods , 2004 .
[71] D. Kehrwald. Parallel lattice Boltzmann simulation of complex flows , 2004 .
[72] T. Hanne. Eine Übersicht zum Scheduling von Baustellen , 2005 .
[73] N. Ettrich. Generation of surface elevation models for urban drainage simulation , 2005 .
[74] Andrew J. Hanson,et al. Visualizing quaternions , 2005, SIGGRAPH Courses.
[75] Brian Osserman. DIFFERENTIAL FORMS , 2005 .
[76] Nicole Marheineke,et al. Fiber Dynamics in Turbulent Flows: General Modeling Framework , 2006, SIAM J. Appl. Math..
[77] Dewey H. Hodges,et al. Nonlinear Composite Beam Theory , 2006 .
[78] K. Marti. Book Review: Werner Schiehlen und Peter Eberhard, Technische Dynamik. Modelle für Regelung und Simulation , 2006 .
[79] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[80] A. Schwab,et al. HOW TO DRAW EULER ANGLES AND UTILIZE EULER PARAMETERS , 2006 .
[81] A. Naumovich. On a Finite Volume Discretization of the Three-dimensional Biot Poroelasticity , 2006 .
[82] Th. Hanne,et al. Applying multiobjective evolutionary algorithms in industrial projects , 2006 .
[83] H. Knaf. Kernel Fisher discriminant functions – a concise and rigorous introduction , 2007 .
[84] A. Unterreiter,et al. Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning , 2007 .
[85] Oliver Wirjadi,et al. Survey of 3d image segmentation methods , 2007 .
[86] J. Spillmann,et al. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.
[87] Martin Arnold,et al. Numerical methods for simulation in applied dynamics , 2008 .
[88] O. Bauchau,et al. Interpolation of finite rotations in flexible multi-body dynamics simulations , 2008 .
[89] E. Grinspun,et al. Discrete elastic rods , 2008, SIGGRAPH 2008.
[90] J. Linn,et al. Simulation of quasistatic deformations using discrete rod models , 2008 .
[91] Robert Bohlin,et al. Fast simulation of quasistatic rod deformations for vr applications , 2008 .
[92] Gloria Platero,et al. Progress in industrial mathematics at ECMI 2006 , 2008 .
[93] Anton Winterfeld,et al. Application of general semi-infinite programming to lapidary cutting problems , 2008, Eur. J. Oper. Res..
[94] Peter Betsch,et al. Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration , 2009 .
[95] Oliver Sander,et al. Geodesic finite elements for Cosserat rods , 2009 .
[97] Miran Saje,et al. The quaternion-based three-dimensional beam theory , 2009 .
[98] Holger Lang,et al. Lagrangian field theory in space and time for geometrically exact Cosserat rods , 2009 .
[99] Olivier A. Bauchau,et al. Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations , 2009 .
[100] Olivier A. Bauchau,et al. Flexible multibody dynamics , 2010 .
[101] Sigrid Leyendecker,et al. A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria , 2011 .
[102] Martin Arnold,et al. Numerical aspects in the dynamic simulation of geometrically exact rods , 2012 .
[103] Claus Führer,et al. Numerical Methods in Multibody Dynamics , 2013 .
[104] Andrew J. Kurdila,et al. 『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.