Boron incorporation into calcite during growth: Implications for the use of boron in carbonates as a pH proxy

[1]  J. Gattuso,et al.  Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy , 2011 .

[2]  G. Tricot,et al.  Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS , 2011 .

[3]  A. Putnis,et al.  Effect of pH on calcite growth at constant aCa2+/aCO32- ratio and supersaturation , 2011 .

[4]  K. Bechgaard,et al.  The effect of the Ca2+ to CO32- activity ratio on spiral growth at the calcite {101¯4} surface , 2010 .

[5]  J. Erez,et al.  Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: implications for δ11B vital effects and paleo-pH reconstructions. , 2010 .

[6]  A. Putnis,et al.  The role of background electrolytes on the kinetics and mechanism of calcite dissolution , 2010 .

[7]  A. Stack,et al.  Growth Rate of Calcite Steps As a Function of Aqueous Calcium-to-Carbonate Ratio: Independent Attachment and Detachment of Calcium and Carbonate Ions , 2010 .

[8]  K. Bechgaard,et al.  The effect of the Ca 2 + to CO 3 2 activity ratio on spiral growth at the calcite f 10 14 g surface , 2010 .

[9]  Manuel Prieto,et al.  In situ AFM study of the interaction between calcite {1 0 1¯ 4} surfaces and supersaturated Mn2+–CO32− aqueous solutions , 2009 .

[10]  A. Putnis,et al.  An atomic force microscopy study of the growth of a calcite surface as a function of calcium/total carbonate concentration ratio in solution at constant supersaturation , 2009 .

[11]  A. J. Kaufman,et al.  Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR , 2009 .

[12]  G. Nehrke,et al.  Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth , 2007 .

[13]  M. Pagani,et al.  Response to the Comment by B. Hönisch, N.G. Hemming, B. Loose on “A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates” , 2007 .

[14]  M. Pagani,et al.  Comment on ''A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates'' by , 2007 .

[15]  A. J. Kaufman,et al.  Experimental measurement of boron isotope fractionation in seawater , 2006 .

[16]  Meng-Chun Chang,et al.  Interpretation of calcite growth data using the two-step crystal growth model , 2006 .

[17]  J. Amonette,et al.  Magnesium inhibition of calcite dissolution kinetics , 2006 .

[18]  J. M. Astilleros,et al.  Nanoscale phenomena during the growth of solid solutions on calcite {101¯4} surfaces , 2006 .

[19]  Andrew J. Watson,et al.  Ocean acidification due to increasing atmospheric carbon dioxide , 2005 .

[20]  M. Pagani,et al.  A critical evaluation of the boron isotope- pH proxy: The accuracy of ancient ocean pH estimates , 2005 .

[21]  J. M. Astilleros,et al.  Nanoscale growth of solids crystallising from multicomponent aqueous solutions [rapid communication] , 2003 .

[22]  S. Manne,et al.  Mechanisms of metal ion sorption on calcite: Composition mapping by lateral force microscopy , 2003 .

[23]  S. Al-Moghrabi,et al.  The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis , 2003 .

[24]  J. M. Astilleros,et al.  The effect of barium on calcite {104} surfaces during growth , 2000 .

[25]  R. Reeder,et al.  Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments , 2000 .

[26]  E. Reardon,et al.  Effect of pH on boron coprecipitation by calcite: further evidence for nonequilibrium partitioning of trace elements , 1999 .

[27]  P. Dove,et al.  Thermodynamics of calcite growth: baseline for understanding biomineral formation , 1998, Science.

[28]  R. Reeder,et al.  Growth-step-selective incorporation of boron on the calcite surface , 1998 .

[29]  W. Broecker,et al.  Changes in pH in the eastern equatorial Pacific across stage 5–6 boundary based on boron isotopes in foraminifera , 1997 .

[30]  J. Amonette,et al.  Dissolution kinetics at the calcite-water interface , 1996 .

[31]  J. Gaillardet,et al.  Boron isotopic compositions of corals: Seawater or diagenesis record? , 1995 .

[32]  R. Reeder,et al.  Relationship between surface structure, growth mechanism, and trace element incorporation in calcite , 1995 .

[33]  W. Broecker,et al.  Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera , 1995, Nature.

[34]  G. Hanson,et al.  Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate , 1995 .

[35]  S. Sen,et al.  Coordination environments of B impurities in calcite and aragonite polymorphs: A 11B MAS NMR study , 1994 .

[36]  C. You,et al.  Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr , 1993, Nature.

[37]  G. Hanson,et al.  BORON ISOTOPIC COMPOSITION AND CONCENTRATION IN MODERN MARINE CARBONATES , 1992 .

[38]  A. Chivas,et al.  Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates , 1991 .

[39]  A. Dickson Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K , 1990 .

[40]  M. P. Eastman,et al.  The coprecipitation of Sr2+ with calcite at 25°C and 1 atm , 1986 .

[41]  B. Jørgensen,et al.  Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes1 , 1985 .

[42]  M. Nomura,et al.  Fundamental studies on the ion-exchange separation of boron isotopes. , 1977 .