To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space

We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and the second (Frechet) derivative of a functional. In this way we couple classical average (given by an infinite-dimensional Gaussian integral) and quantum average (given by the von Neumann trace formula). We can interpret this mathematical construction as a procedure of “dequantization” of quantum mechanics. We represent quantum mechanics as an asymptotic projection of classical statistical mechanics with infinite-dimensional phase space. This space can be represented as the space of classical fields, so quantum mechanics is represented as a projection of “prequantum classical statistical field theory.”

[1]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[2]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[3]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[4]  Andrei Khrennikov,et al.  Foundations of Probability and Physics , 2002 .

[5]  S. Fomin,et al.  MEASURES ON LINEAR TOPOLOGICAL SPACES , 1976 .

[6]  R. Ho,et al.  A remark on the connection between stochastic mechanics and the heat equation , 1974 .

[7]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[8]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[9]  Curie-Weiss model of the quantum measurement process , 2002, cond-mat/0203460.

[10]  Albert Einstein,et al.  The evolution of physics : from the early concepts to relativity and quanta , 1967 .

[11]  A. Messiah Quantum Mechanics , 1961 .

[12]  Luis de la Peña,et al.  The quantum dice : an introduction to stochastic electrodynamics , 1996 .

[13]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[14]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[15]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[16]  Karl Hess,et al.  A possible loophole in the theorem of Bell , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[18]  A. V. Skorohod,et al.  Integration in Hilbert Space , 1974 .

[19]  W. Philipp,et al.  Comment on "Exclusion of time in the theorem of Bell , 2002 .

[20]  Andrei Khrennikov,et al.  Ensemble fluctuations and the origin of quantum probabilistic rule , 2002 .

[21]  W. M. de Muynck,et al.  Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness , 1994 .

[22]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[23]  W. Baere Einstein-Podolsky-Rosen Paradox and Bell's Inequalities , 1986 .

[24]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[25]  D. Greenberger,et al.  The Wave–Particle Dualism—A Tribute to Louis de Broglie on His Ninetieth Birthday , 1986 .

[26]  Andrei Khrennikov Contextual viewpoint to quantum stochastics , 2003 .

[27]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[28]  P. Dirac Principles of Quantum Mechanics , 1982 .

[29]  D. Hilbert,et al.  Über die Grundlagen der Quantenmechanik , 1928 .

[30]  Andrei Khrennikov,et al.  Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model , 2003 .

[31]  Andrei Khrennikov Interference of probabilities and number field structure of quantum models , 2001 .

[32]  Luigi Accardi Can mathematics help solving the interpretational problems of quantum theory? , 1995 .

[33]  S. Albeverio,et al.  Dirichlet forms and diffusion processes on rigged Hilbert spaces , 1977 .