Nonparametric monitoring of multivariate data via KNN learning

Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While mu...

[1]  Fugee Tsung,et al.  A spatial rank‐based multivariate EWMA control chart , 2012 .

[2]  W. Woodall,et al.  Multivariate CUSUM Quality- Control Procedures , 1985 .

[3]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[4]  S. Chakraborti,et al.  Nonparametric Control Charts: An Overview and Some Results , 2001 .

[5]  Ratna Babu Chinnam,et al.  Robust kernel distance multivariate control chart using support vector principles , 2008 .

[6]  D. Hawkins,et al.  A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions , 2003 .

[7]  R. Randles,et al.  A practical affine equivariant multivariate median , 2002 .

[8]  Peihua Qiu,et al.  Multivariate Statistical Process Control Using LASSO , 2009 .

[9]  Peihua Qiu,et al.  A general charting scheme for monitoring serially correlated data with short-memory dependence and nonparametric distributions , 2020 .

[10]  Subhabrata Chakraborti,et al.  Two simple Shewhart-type multivariate nonparametric control charts , 2012 .

[11]  Dongdong Xiang,et al.  A robust self-starting spatial rank multivariate EWMA chart based on forward variable selection , 2017, Comput. Ind. Eng..

[12]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[13]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[14]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[15]  Fugee Tsung,et al.  A Multivariate Sign EWMA Control Chart , 2011, Technometrics.

[16]  Chi Zhang,et al.  A general framework for monitoring complex processes with both in-control and out-of-control information , 2015, Comput. Ind. Eng..

[17]  Peihua Qiu,et al.  Some perspectives on nonparametric statistical process control , 2018 .

[18]  Fugee Tsung,et al.  A kernel-distance-based multivariate control chart using support vector methods , 2003 .

[19]  M. Marcucci MONITORING MULTINOMIAL PROCESSES , 1985 .

[20]  Wei Jiang,et al.  High-Dimensional Process Monitoring and Fault Isolation via Variable Selection , 2009 .

[21]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[22]  H. Oja Multivariate Nonparametric Methods with R , 2010 .

[23]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[24]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[25]  Thong Ngee Goh,et al.  CONTROL CHART FOR MULTIVARIATE ATTRIBUTE PROCESSES , 1998 .

[26]  Peihua Qiu,et al.  Distribution-free multivariate process control based on log-linear modeling , 2008 .

[27]  Douglas M. Hawkins,et al.  A Control Chart Based on A Nonparametric Multivariate Change-Point Model , 2014 .

[28]  Jun Li,et al.  A New Process Control Chart for Monitoring Short-Range Serially Correlated Data , 2019, Technometrics.

[29]  Fugee Tsung,et al.  A density-based statistical process control scheme for high-dimensional and mixed-type observations , 2012 .

[30]  Seoung Bum Kim,et al.  One-class classification-based control charts for multivariate process monitoring , 2009 .

[31]  George C. Runger,et al.  Multivariate statistical process control with artificial contrasts , 2007 .