Modeling uncertainty of expert elicitation for use in risk-based optimization

Capital budgeting optimization models, used in a broad number of fields, require certain and uncertain parameters. Often times, elicited subject matter expert (SME) opinion is used as a parameter estimate, which does not always yield perfect information or correspond to a single value. Because of the uncertainty of the elicitation, the unknown true value of a parameter can be modeled as a random variable from a to-be-determined distribution. We estimate a univariate distribution using four different approaches, the Beta and Gaussian distributions, a standard Gaussian Kernel estimate, and an exponential epi-spline. We also capture dependencies within the parameters through three multivariate approaches: the multivariate Gaussian distribution, the multivariate Kernel and the multivariate exponential epi-spline. This is the first three-dimensional application of the latter. Sampling from the densities, we generate scenarios and implement a superquantile risk-based, capital budgeting optimization model. Numerical experiments contrast the differences between estimators, as well as their effects on an optimal solution. Our findings demonstrate that naively averaging the SME observations for use in optimization, rather than incorporating uncertainty, results in an overly optimistic portfolio. The flexibility of the exponential epi-spline estimator to fuse soft information with observed data produces reasonable density functions for univariate and multivariate random variables. Including a decision-maker’s risk-averseness through risk-based optimization delivers conservative results while incorporating the uncertainty of unknown parameters. We demonstrate a 20% improvement for this specific case when using our approach as opposed to the naive method.

[1]  A. Arigoni Optimization techniques in coal markets: A global cost minimization and a multi-stage procurement strategy , 2016 .

[2]  A. Genz,et al.  Computation of Multivariate Normal and t Probabilities , 2009 .

[3]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[4]  R. Little Missing-Data Adjustments in Large Surveys , 1988 .

[5]  Alexandra M. Newman,et al.  Consistent notation for presenting complex optimization models in technical writing , 2016 .

[6]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[7]  Kevin C. Desouza,et al.  Knowledge management at SMEs: five peculiarities , 2006, J. Knowl. Manag..

[8]  Anthony O'Hagan,et al.  Uncertainty in prior elicitations: a nonparametric approach , 2007 .

[9]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[10]  Anthony O'Hagan,et al.  Eliciting expert beliefs in substantial practical applications , 1998 .

[11]  Twan Dollevoet,et al.  Robust UAV mission planning , 2011, Ann. Oper. Res..

[12]  David L. Woodruff,et al.  Toward scalable stochastic unit commitment. Part 1: load scenario generation , 2015 .

[13]  Nima Safaei,et al.  Workforce-constrained maintenance scheduling for military aircraft fleet: a case study , 2011, Ann. Oper. Res..

[14]  Roger J.-B. Wets,et al.  Modeling and estimating commodity prices: copper prices , 2015 .

[15]  G. Casella,et al.  Generalized Accept-Reject sampling schemes , 2004 .

[16]  R. Groves Nonresponse Rates and Nonresponse Bias in Household Surveys , 2006 .

[17]  Stef van Buuren,et al.  MICE: Multivariate Imputation by Chained Equations in R , 2011 .

[18]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[19]  A. Tamhane,et al.  Statistics and Data Analysis: From Elementary to Intermediate , 1999 .

[20]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[21]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  R. Wets,et al.  Uncertainty Quantification using Exponential Epi-Splines , 2013 .

[24]  Mark J. Wierman,et al.  Consensus and dissention: A measure of ordinal dispersion , 2007, Int. J. Approx. Reason..

[25]  José Antonio Lozano,et al.  Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Stephen M. Hess,et al.  Prioritizing Project Selection , 2009 .

[27]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[28]  A. O'Hagan,et al.  Statistical Methods for Eliciting Probability Distributions , 2005 .

[29]  Michael D. Teter,et al.  Applying Subject Matter Expertise (SME) Elicitation Techniques to TRAC Studies , 2014 .

[30]  Johannes O. Royset,et al.  Superquantile/CVaR risk measures: second-order theory , 2018, Ann. Oper. Res..

[31]  Danny Pfeffermann,et al.  PARAMETRIC DISTRIBUTIONS OF COMPLEX SURVEY DATA UNDER INFORMATIVE PROBABILITY SAMPLING , 1998 .

[32]  Alexandra M. Newman,et al.  Optimizing Military Capital Planning , 2004, Interfaces.

[33]  Donald P. Gaver,et al.  Analysis of the Capability Portfolio Review (CPR) , 2014 .

[34]  Johannes O. Royset,et al.  From Data to Assessments and Decisions: Epi-Spline Technology , 2014 .

[35]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[36]  R. Wets,et al.  Multivariate Epi-splines and Evolving Function Identification Problems , 2016 .

[37]  Dashi I. Singham,et al.  Density estimation of simulation output using exponential epi-splines , 2013, 2013 Winter Simulations Conference (WSC).

[38]  J. M. Palomares,et al.  International Journal of Approximate Reasoning , 2012, SOCO 2012.

[39]  David L. Woodruff,et al.  Multi-period forecasting and scenario generation with limited data , 2015, Computational Management Science.

[40]  Dávid Papp,et al.  Shape-Constrained Estimation Using Nonnegative Splines , 2014 .

[41]  William J. Tarantino,et al.  Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis , 2006, Decis. Anal..

[42]  Johannes O. Royset,et al.  Engineering Decisions under Risk Averseness , 2015 .

[43]  A. Gelfand,et al.  Modeling Expert Opinion Arising as a Partial Probabilistic Specification , 1995 .

[44]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[45]  Johannes O. Royset,et al.  Fusion of hard and soft information in nonparametric density estimation , 2015, Eur. J. Oper. Res..