Exponential Convergence of Non-Linear Monotone SPDEs

For a Markov semigroup $P_t$ with invariant probability measure $\mu$, a constant $\ll>0$ is called a lower bound of the ultra-exponential convergence rate of $P_t$ to $\mu$, if there exists a constant $C\in (0,\infty)$ such that $$ \sup_{\mu(f^2)\le 1}\|P_tf-\mu(f)\|_\infty \le C \e^{-\ll t},\ \ t\ge 1.$$ By using the coupling by change of measure in the line of [F.-Y. Wang, Ann. Probab. 35(2007), 1333--1350], explicit lower bounds of the ultra-exponential convergence rate are derived for a class of non-linear monotone stochastic partial differential equations. The main result is illustrated by the stochastic porous medium equation and the stochastic $p$-Laplace equation respectively. Finally, the $V$-uniformly exponential convergence is investigated for stochastic fast-diffusion equations.

[1]  Wei Liu,et al.  Local and global well-posedness of SPDE with generalized coercivity conditions☆ , 2012, 1202.0019.

[2]  Michael Röckner,et al.  Non-monotone stochastic generalized porous media equations☆ , 2008 .

[3]  Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator , 1996 .

[4]  L. A. Peletier,et al.  Large time behaviour of solutions of the porous medium equation in bounded domains , 1981 .

[5]  Wei Liu,et al.  SPDE in Hilbert space with locally monotone coefficients , 2010, 1005.0632.

[6]  Feng-Yu Wang Harnack inequality and applications for stochastic generalized porous media equations , 2007, 0708.1671.

[7]  Feng-Yu Wang,et al.  Derivative Formula and Applications for Hyperdissipative Stochastic Navier-Stokes/Burgers Equations , 2010, 1009.1464.

[8]  Wei Liu,et al.  Existence and Uniqueness of Invariant Measures for Stochastic Evolution Equations with Weakly Dissipative Drifts , 2011, 1109.2437.

[9]  Wei Liu,et al.  Harnack inequality and strong Feller property for stochastic fast-diffusion equations☆ , 2007, 0712.3136.

[10]  Hypercontractivity properties of nonsymmetric ornstein-uhlenbeck semigroups in hilbert spaces , 1998 .

[11]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[12]  Giuseppe Da Prato,et al.  Stochastic Partial Differential Equations and Applications - VII , 2005 .

[13]  B. Maslowski,et al.  Exponential Ergodicity for Stochastic Reaction‚ÄìDiffusion Equations , 2005 .

[14]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[15]  Feng-Yu Wang,et al.  Stochastic generalized porous media and fast diffusion equations , 2006, math/0602369.

[16]  Wei Liu,et al.  Harnack inequality and applications for stochastic evolution equations with monotone drifts , 2008, 0802.0289.

[17]  Chenggui Yuan,et al.  Harnack inequalities for functional SDEs with multiplicative noise and applications , 2010, 1012.5688.

[18]  Wei Liu,et al.  Ergodicity of transition semigroups for stochastic fast diffusion equations , 2011 .

[19]  Michael Röckner,et al.  Strong Solutions of Stochastic Generalized Porous Media Equations: Existence, Uniqueness, and Ergodicity , 2005, math/0512259.

[20]  M. Röckner,et al.  Harnack and functional inequalities for generalized Mehler semigroups , 2003 .

[21]  B. Maslowski,et al.  LOWER ESTIMATES OF TRANSITION DENSITIES AND BOUNDS ON EXPONENTIAL ERGODICITY FOR STOCHASTIC PDE'S , 2006 .

[22]  Chenggui Yuan,et al.  Harnack inequalities for functional SDEs with multiplicative noise and applications , 2011 .