Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan

[1]  D. Schluter,et al.  The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. , 2022, Ecology letters.

[2]  F. Hartig,et al.  gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity , 2021, PLoS biology.

[3]  T. Quental,et al.  Linking population‐level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale , 2021, Ecology and evolution.

[4]  Y. Iwasa,et al.  Recurrent speciation rates on islands decline with species number , 2021, Proceedings of the Royal Society B.

[5]  Justin C. Havird,et al.  Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves , 2021, Molecular biology and evolution.

[6]  Kin‐Lan Han,et al.  Pervasive Mitonuclear Coadaptation Underlies Fast Development in Interpopulation Hybrids of a Marine Crustacean , 2021, Genome biology and evolution.

[7]  Rebecca E Koch,et al.  Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. , 2021, Trends in ecology & evolution.

[8]  J. Cracraft,et al.  The evolution of a tropical biodiversity hotspot , 2020, Science.

[9]  D. Schluter,et al.  The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait , 2020, bioRxiv.

[10]  A. Hendry,et al.  Evolutionary origins for ecological patterns in space , 2020, Proceedings of the National Academy of Sciences.

[11]  M. D. de Aguiar,et al.  Modeling Mito-nuclear Compatibility and its Role in Species Identification. , 2020, Systematic biology.

[12]  G. Hill Mitonuclear Compensatory Coevolution. , 2020, Trends in genetics : TIG.

[13]  Matthew W. Pennell,et al.  Extant timetrees are consistent with a myriad of diversification histories , 2020, Nature.

[14]  M. Tobler,et al.  Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. , 2019, Integrative and comparative biology.

[15]  F. Hartig,et al.  A Minimal Model for the Latitudinal Diversity Gradient Suggests a Dominant Role for Ecological Limits , 2019, The American Naturalist.

[16]  G. Hill Mitonuclear Ecology , 2019 .

[17]  Susanne A. Fritz,et al.  The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. , 2019, Trends in ecology & evolution.

[18]  J. Werren,et al.  Genetic Incompatibilities Between Mitochondria and Nuclear Genes: Effect on Gene Flow and Speciation , 2019, Front. Genet..

[19]  R. Burton,et al.  Genomic scans reveal multiple mito‐nuclear incompatibilities in population crosses of the copepod Tigriopus californicus , 2019, Evolution; international journal of organic evolution.

[20]  M. D. de Aguiar,et al.  Signatures of Microevolutionary Processes in Phylogenetic Patterns , 2018, Systematic biology.

[21]  Jeet Sukumaran,et al.  Microevolutionary processes impact macroevolutionary patterns , 2018, BMC Evolutionary Biology.

[22]  Philip B. Holden,et al.  Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves , 2018, Science.

[23]  M. Coll,et al.  An inverse latitudinal gradient in speciation rate for marine fishes , 2018, Nature.

[24]  R. Burton,et al.  Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus , 2018, Nature Ecology & Evolution.

[25]  K. Omland,et al.  Genomic evidence of speciation reversal in ravens , 2018, Nature Communications.

[26]  Matthew W. Pennell,et al.  Speciation gradients and the distribution of biodiversity , 2017, Nature.

[27]  D. Rabosky,et al.  Positive association between population genetic differentiation and speciation rates in New World birds , 2017, Proceedings of the National Academy of Sciences.

[28]  J. Wiens,et al.  The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity , 2017 .

[29]  R. T. Brumfield,et al.  A latitudinal phylogeographic diversity gradient in birds , 2017, PLoS biology.

[30]  G. Hill The mitonuclear compatibility species concept , 2017, The Auk.

[31]  P. Sunnucks,et al.  Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation , 2017, Front. Genet..

[32]  M. D. Aguiar Speciation in the Derrida–Higgs model with finite genomes and spatial populations , 2016, 1606.06559.

[33]  A. Cutter,et al.  Ephemeral ecological speciation and the latitudinal biodiversity gradient , 2016, Evolution; international journal of organic evolution.

[34]  G. Hill Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap , 2016, Ecology and evolution.

[35]  D. Rabosky,et al.  Species richness at continental scales is dominated by ecological limits. , 2015, The American naturalist.

[36]  L. Harmon,et al.  Unifying ecology and macroevolution with individual-based theory , 2015, Ecology letters.

[37]  Zhiheng Wang,et al.  Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds , 2014 .

[38]  J. Enríquez,et al.  Mitonuclear interactions: evolutionary consequences over multiple biological scales , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Ryan A Chisholm,et al.  Species ages in neutral biodiversity models. , 2014, Theoretical population biology.

[40]  H. Morlon Phylogenetic approaches for studying diversification. , 2014, Ecology letters.

[41]  J. Stegen,et al.  When should species richness be energy limited, and how would we know? , 2014, Ecology letters.

[42]  J. Weir Environmental harshness, latitude and incipient speciation , 2014, Molecular ecology.

[43]  C. Botero,et al.  Environmental harshness is positively correlated with intraspecific divergence in mammals and birds , 2014, Molecular ecology.

[44]  M. S. Araújo,et al.  Latitudinal gradients in intraspecific ecological diversity , 2013, Biology Letters.

[45]  R. Burton,et al.  Cytonuclear Genomic Interactions and Hybrid Breakdown , 2013 .

[46]  R. Burton,et al.  Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod , 2013, Proceedings of the Royal Society B: Biological Sciences.

[47]  D. Rabosky,et al.  Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds , 2013, Proceedings of the National Academy of Sciences.

[48]  R. Broughton,et al.  Mitochondrial–Nuclear Interactions: Compensatory Evolution or Variable Functional Constraint among Vertebrate Oxidative Phosphorylation Genes? , 2013, Genome biology and evolution.

[49]  S. Gavrilets,et al.  Evolution of mate choice and the so-called magic traits in ecological speciation. , 2013, Ecology letters.

[50]  L. Harmon,et al.  A unified model of species immigration, extinction and abundance on islands , 2013 .

[51]  Wilfried Thuiller,et al.  A road map for integrating eco-evolutionary processes into biodiversity models. , 2013, Ecology letters.

[52]  U. Dieckmann,et al.  Hybridization and speciation , 2013, Journal of evolutionary biology.

[53]  R. Burton,et al.  A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? , 2012, Molecular ecology.

[54]  D. Mishmar,et al.  Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. , 2012, Biochimica et biophysica acta.

[55]  N. Patrik What is ecological speciation , 2012 .

[56]  Rampal S. Etienne,et al.  Prolonging the Past Counteracts the Pull of the Present: Protracted Speciation Can Explain Observed Slowdowns in Diversification , 2012, Systematic biology.

[57]  David Alonso,et al.  Does Sex Speed Up Evolutionary Rate and Increase Biodiversity? , 2012, PLoS Comput. Biol..

[58]  Carlos J. Melián,et al.  NEUTRAL BIODIVERSITY THEORY CAN EXPLAIN THE IMBALANCE OF PHYLOGENETIC TREES BUT NOT THE TEMPO OF THEIR DIVERSIFICATION , 2011, Evolution; international journal of organic evolution.

[59]  S. Hubbell The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) , 2011 .

[60]  Tracy Aze,et al.  Interplay Between Changing Climate and Species’ Ecology Drives Macroevolutionary Dynamics , 2011, Science.

[61]  James Rosindell,et al.  Unified neutral theory of biodiversity and biogeography , 2010, Scholarpedia.

[62]  Ryan A Chisholm,et al.  Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities , 2010, Proceedings of the National Academy of Sciences.

[63]  Daniel L Rabosky,et al.  EXTINCTION RATES SHOULD NOT BE ESTIMATED FROM MOLECULAR PHYLOGENIES , 2010, Evolution; international journal of organic evolution.

[64]  Rampal S Etienne,et al.  Protracted speciation revitalizes the neutral theory of biodiversity. , 2010, Ecology letters.

[65]  James P O'Dwyer,et al.  Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity , 2010, Ecology letters.

[66]  N. Lane Biodiversity: On the origin of bar codes , 2009, Nature.

[67]  Ian P. Woiwod,et al.  What drives community dynamics? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[68]  Y. Bar-Yam,et al.  Global patterns of speciation and diversity , 2009, Nature.

[69]  A. Templeton,et al.  Mitochondrial bioenergetics as a major motive force of speciation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[70]  Michael J Benton,et al.  The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time , 2009, Science.

[71]  Amos Maritan,et al.  Patterns of relative species abundance in rainforests and coral reefs , 2007, Nature.

[72]  Marti J. Anderson,et al.  Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. , 2007, Ecology letters.

[73]  Nancy Knowlton,et al.  Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. , 2007, Ecology letters.

[74]  D. Schluter,et al.  The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals , 2007, Science.

[75]  Franz J. Weissing,et al.  Modes of speciation and the neutral theory of biodiversity , 2007 .

[76]  G. Arnqvist,et al.  TEMPERATURE-SPECIFIC OUTCOMES OF CYTOPLASMIC-NUCLEAR INTERACTIONS ON EGG-TO-ADULT DEVELOPMENT TIME IN SEED BEETLES , 2007, Evolution; international journal of organic evolution.

[77]  A. P. Allen,et al.  Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. , 2006, Ecology letters.

[78]  K. I. Ugland,et al.  On plotting species abundance distributions. , 2006, The Journal of animal ecology.

[79]  Sergey Gavrilets,et al.  Dynamic patterns of adaptive radiation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Kevin J. Gaston,et al.  Can the evolutionary‐rates hypothesis explain species‐energy relationships? , 2005 .

[81]  D. Rand,et al.  The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications , 2005 .

[82]  B. Emerson,et al.  Ecology: Is speciation driven by species diversity? (Reply) , 2005, Nature.

[83]  M. Vellend Species Diversity and Genetic Diversity: Parallel Processes and Correlated Patterns , 2005, The American Naturalist.

[84]  Kevin J. Gaston,et al.  The lognormal distribution is not an appropriate null hypothesis for the species–abundance distribution , 2005 .

[85]  Brent C. Emerson,et al.  Species diversity can drive speciation , 2005, Nature.

[86]  S. Nee The neutral theory of biodiversity: do the numbers add up? , 2005 .

[87]  O. Seehausen Hybridization and adaptive radiation. , 2004, Trends in ecology & evolution.

[88]  Helmut Hillebrand,et al.  On the Generality of the Latitudinal Diversity Gradient , 2004, The American Naturalist.

[89]  S. Hubbell,et al.  Neutral theory and relative species abundance in ecology , 2003, Nature.

[90]  R. Ricklefs,et al.  A comment on Hubbell's zero‐sum ecological drift model , 2003 .

[91]  J. Gravner,et al.  DYNAMICS OF SPECIATION AND DIVERSIFICATION IN A METAPOPULATION , 2000, Evolution; international journal of organic evolution.

[92]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[93]  Michael D. Vose,et al.  Rapid parapatric speciation on holey adaptive landscapes , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[94]  B. Derrida,et al.  Stochastic models for species formation in evolving populations , 1991 .

[95]  B. Derrida,et al.  Evolution in a flat fitness landscape , 1991 .

[96]  J. Neigel,et al.  Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics , 1987 .

[97]  G. Sugihara Minimal Community Structure: An Explanation of Species Abundance Patterns , 1980, The American Naturalist.

[98]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[99]  F. W. Preston The Commonness, And Rarity, of Species , 1948 .