Schrodinger Maps and Their Associated Frame Systems

In this paper we establish the equivalence of solutions bet ween Schrodinger maps intoS 2 orH 2 and their associated gauge invariant Schrodinger equations. We also establish the existence of global weak solutions intoH 2 in two space dimensions. We extend these ideas for maps into compact hermitian symmetric manifolds with trivial first cohomology.

[1]  Karen K. Uhlenbeck,et al.  On the well-posedness of the wave map problem in high dimensions , 2001, math/0109212.

[2]  L. Vega,et al.  GLOBAL WELLPOSEDNESS FOR 1 D NON-LINEAR SCHRÖDINGER EQUATION FOR DATA WITH AN INFINITE L 2 NORM , 2001 .

[3]  Jalal Shatah,et al.  Weak solutions and development of singularities of the SU(2) σ‐model , 1988 .

[4]  Luis Vega,et al.  On the ill-posedness of some canonical dispersive equations , 2001 .

[5]  Luis Vega,et al.  Formation of Singularities and Self-Similar Vortex Motion Under the Localized Induction Approximation , 2003 .

[6]  L. Simon Regularity Theory for Harmonic Maps , 1996 .

[7]  L. Vega,et al.  Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm , 2001 .

[8]  Karen Uhlenbeck,et al.  Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .

[9]  Karen Uhlenbeck,et al.  A regularity theory for harmonic maps , 1982 .

[10]  I. Bejenaru,et al.  On Schrödinger maps , 2008 .

[11]  A. Freire,et al.  Global weak solutions of the wave map system to compact homogeneous spaces , 1996 .

[12]  Jalal Shatah,et al.  The Cauchy problem for wave maps , 2002 .

[13]  R. Schlafly,et al.  On equivariant isometric embeddings , 1980 .

[14]  Wei Ding,et al.  Schrödinger Flows on Compact Hermitian Symmetric Spaces and Related Problems , 2003 .

[15]  O. Pashaev,et al.  The Cauchy problem for the planar spin-liquid model , 2005 .

[16]  D. Zwanziger,et al.  Every gauge orbit passes inside the Gribov horizon , 1991 .