Deep learning models for effective refractive indices in silicon nitride waveguides

[1]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[2]  P. Charette,et al.  Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. , 2008, Optics express.

[3]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[4]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[5]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[6]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  P. E. Lagasse,et al.  Finite Element Analysis Waveguides of Optical , 1981 .

[8]  Chiho Kim,et al.  Machine learning in materials informatics: recent applications and prospects , 2017, npj Computational Materials.

[9]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[10]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[11]  Gunther Roelkens,et al.  Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[12]  J. Aitchison,et al.  Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure. , 2016, Optics letters.

[13]  Yibo Zhang,et al.  Deep Learning Microscopy , 2017, ArXiv.

[14]  Toshiaki Koike-Akino,et al.  Acceleration of FDTD-based Inverse Design Using a Neural Network Approach , 2017 .

[15]  O. Kisi,et al.  Comparison of three back-propagation training algorithms for two case studies , 2005 .

[16]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[17]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[18]  F. Fernández,et al.  Review of finite element methods for microwave and optical waveguides , 1991, Proc. IEEE.

[19]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[20]  Henk Wymeersch,et al.  Machine learning under the spotlight , 2017, Nature Photonics.

[21]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[22]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[23]  C. Doerr,et al.  Compact polarization rotator on silicon for polarization-diversified circuits. , 2011, Optics letters.

[24]  Chin-Ping Yu,et al.  Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. , 2004, Optics express.