Lipschitz stability in inverse problems for a Kirchhoff plate equation

In this paper, we prove a Carleman estimate for a Kirchhoff plate equation and apply the Carleman estimate to inverse problems of determining spatially varying two Lame coefficients and the mass density by a finite number of boundary observations. Our main results are Lipschitz stability estimates for the inverse problems under suitable conditions of initial values and boundary val-

[1]  A. Bukhgeǐm,et al.  Introduction to the Theory of Inverse Problems , 2000 .

[2]  Victor Isakov,et al.  An inverse problem for the dynamical Lamé system with two sets of boundary data , 2003 .

[3]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[4]  D. Tataru,et al.  Boundary controllability for conservative PDEs , 1995 .

[5]  Taro Asuke INFINITESIMAL DERIVATIVE OF THE BOTT CLASS AND THE SCHWARZIAN DERIVATIVES , 2009 .

[6]  Yuuki Tadokoro,et al.  A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic , 2005, math/0508433.

[7]  Michael V. Klibanov,et al.  Lipschitz stability of an inverse problem for an acoustic equation , 2006 .

[8]  Ken-Ichi Yoshikawa Real K3 surfaces without real points, equivariant determinant of the Laplacian, and the Borcherds Φ-function , 2006 .

[9]  Dan Tiba,et al.  Applications of convexity in some identification problems , 2005 .

[10]  Masahiro Yamamoto,et al.  LETTER TO THE EDITOR: One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization , 2000 .

[11]  Michael V. Klibanov,et al.  Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data , 1991 .

[12]  Jacques-Louis Lions,et al.  Modelling Analysis and Control of Thin Plates , 1988 .

[13]  Victor Isakov,et al.  Uniqueness in Determining Damping Coefficients in Hyperbolic Equations , 2001 .

[14]  A. Kh. Amirov,et al.  Integral Geometry and Inverse Problems for Kinetic Equations , 2001 .

[15]  Daniel Tataru,et al.  A priori estimates of Carleman's type in domains with boundary , 1994 .

[16]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[17]  Roberto Triggiani,et al.  Carleman Estimates with No Lower-Order Terms for General Riemann Wave Equations. Global Uniqueness and Observability in One Shot , 2002 .

[18]  Masahiro Yamamoto,et al.  Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients , 2005 .

[19]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[20]  Lucie Baudouin,et al.  Uniqueness and stability in an inverse problem for the Schrödinger equation , 2007 .

[21]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[22]  Victor Isakov,et al.  Lipschitz stability in the lateral Cauchy problem for elasticity system , 2003 .

[23]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[24]  Mourad Bellassoued,et al.  Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation , 2004 .

[25]  Ken-Ichi Yoshikawa On the singularity of Quillen metrics , 2006 .

[26]  V. Isakov Appendix -- Function Spaces , 2017 .

[27]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[28]  Masahiro Yamamoto,et al.  GLOBAL UNIQUENESS AND STABILITY IN DETERMINING COEFFICIENTS OF WAVE EQUATIONS , 2001 .

[29]  Y. B. Wang,et al.  A boundary integral method for solving inverse heat conduction problem , 2006 .

[30]  Daniel Tataru,et al.  Carleman estimates and unique continuation for solutions to boundary value problems , 1996 .

[31]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[32]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[33]  Fumio Kikuchi,et al.  Remarks on a posteriori error estimation for finite element solutions , 2007 .

[34]  Masayoshi Kubo,et al.  Uniqueness in inverse hyperbolic problems, -Carleman estimate for boundary value problems- , 2000 .

[35]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[36]  Hao Fang,et al.  ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS , 2006 .

[37]  Jenn-Nan Wang,et al.  Uniqueness in inverse problems for an elasticity system with residual stress by a single measurement , 2003 .

[38]  Masahiro Yamamoto Uniqueness and stability in multidimensional hyperbolic inverse problems , 1999 .

[39]  Masahiro Yamamoto,et al.  Carleman estimates for the non-stationary Lamé system and the application to an inverse problem , 2005 .

[40]  Enrique Zuazua,et al.  Controllability of the linear system of thermoelastic plates , 1996, Advances in Differential Equations.

[41]  Masahiro Yamamoto,et al.  Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation , 2006 .

[42]  K. Graff Wave Motion in Elastic Solids , 1975 .

[43]  Victor Isakov,et al.  A nonhyperbolic cauchy problem for □b□c and its applications to elasticity theory , 1986 .

[44]  Xiaoyu Fu,et al.  A weighted identity for partial differential operators of second order and its applications , 2006 .

[45]  A Khaĭdarov,et al.  CARLEMAN ESTIMATES AND INVERSE PROBLEMS FOR SECOND ORDER HYPERBOLIC EQUATIONS , 1987 .

[46]  Michael V. Klibanov,et al.  Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities , 1993 .

[47]  Victor Isakov,et al.  Carleman Type Estimates in an Anisotropic Case and Applications , 1993 .

[48]  Masahiro Yamamoto,et al.  A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation , 2006 .

[49]  S. Saitoh,et al.  Some stability estimates in determining sources and coefficients , 2005 .

[50]  Masahiro Yamamoto,et al.  Determination of a coefficient in an acoustic equation with a single measurement , 2003 .

[51]  Gen Nakamura,et al.  Uniqueness in Inverse Problems for the Isotropic Lame System , 1998 .

[52]  Masahiro Yamamoto,et al.  Unique continuation and an inverse problem for hyperbolic equations across a general hypersurface , 2005 .

[53]  Irena Lasiecka,et al.  Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment , 1990 .

[54]  Victor Isakov,et al.  On Uniqueness in a Lateral Cauchy Problem with Multiple Characteristics , 1997 .