Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions.

The kinetic Monte Carlo (KMC) method provides a versatile tool to investigate the mechanisms underlying photocurrent generation in nanostructured organic solar cells. Currently available algorithms can already support the development of more cost-efficient photovoltaic devices, but so far no attempt has been made to test the validity of some fundamental model assumptions and their impact on the simulation result. A meaningful example is given by the treatment of the electrostatic interactions. In most KMC models, electrostatic interactions are approximated by means of cutoff based potentials, irrespective of the long-range nature of the Coulomb interaction. In this paper, the reliability of such approximation is tested against the exact Ewald sum. The results under short-circuit and flat-band conditions show that use of cutoff-based potentials tends to underestimate real device performance, in terms of internal quantum efficiency and current density. Together with this important finding, we formalize other methodological aspects which have been scarcely discussed in the literature.

[1]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[2]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[3]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[4]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[5]  Lingyi Meng,et al.  Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. , 2010, The journal of physical chemistry. B.

[6]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[7]  Thomas Strobel,et al.  Origin of the efficient polaron-pair dissociation in polymer-Fullerene blends. , 2009, Physical review letters.

[8]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[9]  Michele Maggini,et al.  Polymer Solar Cells: Recent Approaches and Achievements , 2010 .

[10]  R. Janssen,et al.  Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism , 2005 .

[11]  Ries,et al.  Monte Carlo study of dispersive charge-carrier transport in spatially random systems with and without energetic disorder. , 1987, Physical review. B, Condensed matter.

[12]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[13]  G. Döhler,et al.  Hopping conduction in a "superlattice" , 1975 .

[14]  A. Walker,et al.  Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. , 2005, Nano letters.

[15]  J. Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of chemical research.

[16]  Jpl John Segers,et al.  Efficient Monte Carlo methods for the simulation of catalytic surface reactions , 1998 .

[17]  P. Heremans,et al.  Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. , 2009, Accounts of chemical research.

[18]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  Eva Harth,et al.  EXCITON DIFFUSION AND DISSOCIATION IN CONJUGATED POLYMER/FULLERENE BLENDS AND HETEROSTRUCTURES , 1999 .

[21]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[22]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[23]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[24]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[25]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[26]  Kristian O. Sylvester-Hvid,et al.  Simplified charge separation energetics in a two-dimensional model for polymer-based photovoltaic cells. , 2005, The journal of physical chemistry. B.

[27]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[28]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[29]  Mark A. Ratner,et al.  Two-dimensional model for polymer-based photovoltaic cells: Numerical simulations of morphology effects , 2004 .

[30]  Thomas,et al.  Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene). , 1996, Physical review. B, Condensed matter.

[31]  Donal D. C. Bradley,et al.  Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends , 2005 .

[32]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[33]  Neil C. Greenham,et al.  A microscopic model for the behavior of nanostructured organic photovoltaic devices , 2007 .

[34]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[35]  Fan Yang,et al.  Photocurrent generation in nanostructured organic solar cells. , 2008, ACS nano.

[36]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[37]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[38]  J. Nelson,et al.  Modeling charge transport in organic photovoltaic materials. , 2009, Accounts of chemical research.

[39]  Michael D. McGehee,et al.  Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors , 2006 .

[40]  Nikos L. Doltsinis,et al.  Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .

[41]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[42]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[43]  Mats Andersson,et al.  Photoluminescence quenching at a polythiophene/C-60 heterojunction , 2000 .

[44]  Blas P. Uberuaga,et al.  Radiation Effects in Solids , 2007 .

[45]  William J. Potscavage,et al.  Critical interfaces in organic solar cells and their influence on the open-circuit voltage. , 2009, Accounts of chemical research.

[46]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[47]  Bao Lei,et al.  Quantifying the relation between the morphology and performance of polymer solar cells using Monte Carlo simulations , 2008 .

[48]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.