Comparative accuracy of DQ and HDQ methods for three-dimensional vibration analysis of rectangular plates

An accuracy study between the Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) methods for three-dimensional elasticity solutions of free vibration of rectangular plates is carried out. The solution capability of the DQ and HDQ methods is first studied. Then the numerical performance of both the methods is compared. It is found that the DQ method displays more superior convergence characteristics over the HDQ method for the lower modes of vibration. However, the HDQ method is advantageous over the DQ method for computing higher modes of vibration. It is also discovered that the DQ and HDQ methods produce better convergent solutions than the Finite Element Method (FEM) when a similar number of discrete points/nodes are used. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  R. Bellman,et al.  DIFFERENTIAL QUADRATURE AND LONG-TERM INTEGRATION , 1971 .

[2]  J. R. Hutchinson,et al.  Vibration of a Free Rectangular Parallelepiped , 1983 .

[3]  Chuei-Tin Chang,et al.  New insights in solving distributed system equations by the quadrature method—I. Analysis , 1989 .

[4]  K. Liew,et al.  Analysis of annular Reissner/Mindlin plates using differential quadrature method , 1998 .

[5]  Xinwei Wang,et al.  Harmonic differential quadrature method and applications to analysis of structural components , 1995 .

[6]  K. M. Liew,et al.  A continuum three-dimensional vibration analysis of thick rectangular plates , 1993 .

[7]  K. Liew,et al.  AXISYMMETRIC FREE VIBRATION OF THICK ANNULAR PLATES , 1999 .

[8]  Arthur W. Leissa,et al.  On the three‐dimensional vibrations of the cantilevered rectangular parallelepiped , 1983 .

[9]  Chang Shu,et al.  EXPLICIT COMPUTATION OF WEIGHTING COEFFICIENTS IN THE HARMONIC DIFFERENTIAL QUADRATURE , 1997 .

[10]  K. M. Liew,et al.  Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations , 1997 .

[11]  K. M. Liew,et al.  Analysis of moderately thick circular plates using differential quadrature method , 1997 .

[12]  Bingen Yang,et al.  STRIP DISTRIBUTED TRANSFER FUNCTION METHOD FOR ANALYSIS OF PLATES , 1996 .

[13]  K. M. Liew,et al.  A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates , 1997 .

[14]  K. M. Liew,et al.  Vibration of Mindlin plates. Programming the p‐version Ritz method. (Liew, K. M., Wang, C. M., Xiang, Y., Kitipornchai, S.) , 1999 .

[15]  Bending Analysis of Simply Supported Shear Deformable Skew Plates , 1997 .

[16]  A. W. Leissa,et al.  Literature Review : Plate Vibration Research, 1976 - 1980: Classical Theory , 1981 .

[17]  K. M. Liew,et al.  Differential quadrature method for Mindlin plates on Winkler foundations , 1996 .

[18]  A. W. Leissa,et al.  LITERATURE REVIEW: survey and analysis of the Shock and Vibration literature: Recent Studies in Plate Vibrations: 1981-85 Part I. Classical Theory , 1987 .

[19]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[20]  K. Liew,et al.  Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates , 1998 .

[21]  W. H. Wittrick Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory , 1987 .

[22]  K. M. Liew,et al.  Three-dimensional vibration of rectangular plates: Effects of thickness and edge constraints , 1995 .

[23]  K. M. Liew,et al.  A differential quadrature procedure for three-dimensional buckling analysis of rectangular plates , 1999 .

[24]  K. M. Liew,et al.  Three-Dimensional Vibration Analysis of Rectangular Plates Based on Differential Quadrature Method , 1999 .

[25]  R. Bellman,et al.  DIFFERENTIAL QUADRATURE: A TECHNIQUE FOR THE RAPID SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 1972 .

[26]  C. Shu,et al.  APPLICATION OF GENERALIZED DIFFERENTIAL QUADRATURE TO SOLVE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1992 .

[27]  Yang Xiang,et al.  Research on thick plate vibration: a literature survey , 1995 .

[28]  A. W. Leissa,et al.  Recent studies in plate vibrations: 1981-85. I: Classical theory , 1987 .

[29]  K. M. Liew,et al.  VIBRATION ANALYSIS OF CIRCULAR MINDLIN PLATES USING THE DIFFERENTIAL QUADRATURE METHOD , 1997 .

[30]  K. M. Liew,et al.  An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates , 1997 .

[31]  K. M. Liew,et al.  Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility , 1996 .

[32]  S. Srinivas,et al.  An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates , 1970 .

[33]  K. M. Liew,et al.  Three-dimensional vibration of rectangular plates : Variance of simple support conditions and influence of in-plane inertia , 1994 .