A local convergence theorem for the super-halley method in a Banach space
暂无分享,去创建一个
Ioannis K. Argyros | Dong Chen | I. Argyros | Dong Chen | Q. Qian | Q. Qian
[1] Joseph F. Traub,et al. Theory of optimal algorithms , 1973 .
[2] Ioannis K. Argyros,et al. On a class of nonlinear integral equations arising in neutron transport , 1988 .
[3] Annie A. M. Cuyt,et al. Computational implementation of the multivariate Halley method for solving nonlinear systems of equations , 1985, TOMS.
[4] Tetsuro Yamamoto,et al. On the method of tangent hyperbolas on Banach spaces , 1988 .
[5] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[6] Miodrag S. Petković,et al. On Halley-like algorithms for simultaneous approximation of polynomial complex zeros , 1989 .
[7] George J. Davis. Algorithm 598: an algorithm to compute solvent of the matrix equation AX2 + BX + C = 0 , 1983, TOMS.
[8] Miodrag S. Petković,et al. Some interval iterations for finding a zero of a polynomial with error bounds , 1987 .