Solving convex programming problems with equality constraints by neural networks

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Chih-Jen Lin,et al.  An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming , 1998, SIAM J. Optim..

[3]  Andrzej Cichocki,et al.  A new neural network for solving linear programming problems , 1996 .

[4]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[5]  Jun Wang A deterministic annealing neural network for convex programming , 1994, Neural Networks.

[6]  Stefen Hui,et al.  On solving constrained optimization problems with neural networks: a penalty method approach , 1993, IEEE Trans. Neural Networks.

[7]  Jun Wang Analysis and design of a recurrent neural network for linear programming , 1993 .

[8]  Stefen Hui,et al.  Neural networks for constrained optimization problems , 1993, Int. J. Circuit Theory Appl..

[9]  M. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[10]  Shu-Cherng Fang,et al.  Linear Optimization and Extensions: Theory and Algorithms , 1993 .

[11]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[12]  Michael A. Shanblatt,et al.  Linear and quadratic programming neural network analysis , 1992, IEEE Trans. Neural Networks.

[13]  Jun Wang Analogue neural network for solving the assignment problem , 1992 .

[14]  Jun Wang,et al.  On the asymptotic Properties of Recurrent Neural Networks for Optimization , 1991, Int. J. Pattern Recognit. Artif. Intell..

[15]  J. Wang A time-varying recurrent neural system for convex programming , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[16]  M. Shanblatt,et al.  A constrained optimization neural net technique for economic power dispatch , 1990, IEEE International Symposium on Circuits and Systems.

[17]  Gintaras V. Reklaitis,et al.  Nonlinear Optimization Using Generalized Hopfield Networks , 1989, Neural Computation.

[18]  Leon O. Chua,et al.  Neural networks for nonlinear programming , 1988 .

[19]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Leon O. Chua,et al.  Nonlinear programming without computation , 1984 .

[21]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Cronin Differential Equations: Introduction and Qualitative Theory , 1980 .

[23]  L. Chua,et al.  Complete stability of autonomous reciprocal nonlinear networks , 1978 .

[24]  Jack B. Dennis,et al.  Mathematical Programming and Electrical Networks , 1959, The Mathematical Gazette.

[25]  Stefen Hui,et al.  Solving linear programming problems with neural networks: a comparative study , 1995, IEEE Trans. Neural Networks.

[26]  S. Fang,et al.  An inexact approach to solving linear semi-infinite programming problems , 1994 .

[27]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[28]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[29]  E. Polak Introduction to linear and nonlinear programming , 1973 .