Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws

Abstract We discuss the discrete formulation of systems of conservation laws in port-Hamiltonian form on dual chain complexes. Based on integral balance equations and topological information, this representation is exact and qualifies as a control model. The finite-dimensional approximation requires an energy discretization that yields discrete constitutive equations. We give (i) a brief overview of discrete modeling of conservation laws on n-complexes and (ii) extend existing results by allowing for mixed physical types of boundary inputs. This requires the construction of a primal and a dual complex based on the underlying staggered grids and the localization of the inputs on the system boundary. Finally, (iii) we discuss the properties of the resulting structure-preserving discretization scheme based on a consistency analysis for the 2D nonlinear shallow water equations.

[1]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[2]  Hans Zwart,et al.  Building systems from simple hyperbolic ones , 2016, Syst. Control. Lett..

[3]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[4]  Jacquelien M. A. Scherpen,et al.  Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems , 2012, Autom..

[5]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[6]  A. J. V. D. Schafta,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[7]  Arjan van der Schaft,et al.  Hamiltonian discretization of boundary control systems , 2004, Autom..

[8]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[9]  O. Farle,et al.  A port-hamiltonian finite-element formulation for the maxwell equations , 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[10]  B. Fornberg High-order finite differences and the pseudospectral method on staggered grids , 1990 .

[11]  A. Schaft,et al.  Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.

[12]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[13]  Thomas Hélie,et al.  Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach , 2016 .

[14]  Karl F. Warnick,et al.  Differential Forms and Electromagnetic Field Theory (Invited Paper) , 2014 .

[15]  Robert Altmann,et al.  A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows , 2017, Syst. Control. Lett..

[16]  Yann Le Gorrec,et al.  A port-Hamiltonian formulation of a 2D boundary controlled acoustic system , 2015 .

[17]  Bernhard Maschke,et al.  Port-based modelling of mass transport phenomena , 2009 .

[18]  Arjan van der Schaft,et al.  Discrete conservation laws and port-Hamiltonian systems on graphs and complexes , 2011, ArXiv.

[19]  Marc I. Gerritsma,et al.  High order geometric methods with exact conservation properties , 2014, J. Comput. Phys..

[20]  A. Iserles Generalized Leapfrog Methods , 1986 .

[21]  Denis Matignon,et al.  A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system , 2017 .

[22]  T. Frankel The geometry of physics : an introduction , 2004 .

[23]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[24]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[25]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[26]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[27]  Paul Kotyczka,et al.  Local linear dynamics assignment in IDA-PBC , 2013, Autom..

[28]  Sylvain Brémond,et al.  Symplectic spatial integration schemes for systems of balance equations , 2017 .

[29]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[30]  P. Kotyczka Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems , 2016 .

[31]  Laurent Lefèvre,et al.  Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws , 2012, J. Comput. Phys..

[32]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[33]  Raphaèle Herbin,et al.  A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions , 2005 .