Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws
暂无分享,去创建一个
[1] Sabine Fenstermacher,et al. Numerical Approximation Of Partial Differential Equations , 2016 .
[2] Hans Zwart,et al. Building systems from simple hyperbolic ones , 2016, Syst. Control. Lett..
[3] Stefano Stramigioli,et al. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .
[4] Jacquelien M. A. Scherpen,et al. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems , 2012, Autom..
[5] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[6] A. J. V. D. Schafta,et al. Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .
[7] Arjan van der Schaft,et al. Hamiltonian discretization of boundary control systems , 2004, Autom..
[8] Romeo Ortega,et al. Putting energy back in control , 2001 .
[9] O. Farle,et al. A port-hamiltonian finite-element formulation for the maxwell equations , 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA).
[10] B. Fornberg. High-order finite differences and the pseudospectral method on staggered grids , 1990 .
[11] A. Schaft,et al. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.
[12] Arjan van der Schaft,et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..
[13] Thomas Hélie,et al. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach , 2016 .
[14] Karl F. Warnick,et al. Differential Forms and Electromagnetic Field Theory (Invited Paper) , 2014 .
[15] Robert Altmann,et al. A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows , 2017, Syst. Control. Lett..
[16] Yann Le Gorrec,et al. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system , 2015 .
[17] Bernhard Maschke,et al. Port-based modelling of mass transport phenomena , 2009 .
[18] Arjan van der Schaft,et al. Discrete conservation laws and port-Hamiltonian systems on graphs and complexes , 2011, ArXiv.
[19] Marc I. Gerritsma,et al. High order geometric methods with exact conservation properties , 2014, J. Comput. Phys..
[20] A. Iserles. Generalized Leapfrog Methods , 1986 .
[21] Denis Matignon,et al. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system , 2017 .
[22] T. Frankel. The geometry of physics : an introduction , 2004 .
[23] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[24] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[25] H. Flanders. Differential Forms with Applications to the Physical Sciences , 1964 .
[26] Arjan van der Schaft,et al. Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..
[27] Paul Kotyczka,et al. Local linear dynamics assignment in IDA-PBC , 2013, Autom..
[28] Sylvain Brémond,et al. Symplectic spatial integration schemes for systems of balance equations , 2017 .
[29] A. Arakawa,et al. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .
[30] P. Kotyczka. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems , 2016 .
[31] Laurent Lefèvre,et al. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws , 2012, J. Comput. Phys..
[32] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[33] Raphaèle Herbin,et al. A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions , 2005 .