Genetic highthroughput screening in retinitis pigmentosa based on high resolution melting (HRM) analysis.

[1]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[2]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[3]  J. Ott,et al.  Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa. , 1993, Genomics.

[4]  Carolyn A. Converse,et al.  Rhodopsin mutations in a Scottish retinitis pigmentosa population, including a novel splice site mutation in intron four. , 1994, The British journal of ophthalmology.

[5]  S. Daiger,et al.  Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies , 2001, Human mutation.

[6]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[7]  Val C. Sheffield,et al.  Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome , 2002, Nature Genetics.

[8]  O. L. Moritz,et al.  The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. , 2004, Molecular biology of the cell.

[9]  M. Cossée,et al.  Testing for triallelism: analysis of six BBS genes in a Bardet–Biedl syndrome family cohort , 2005, European Journal of Human Genetics.

[10]  G. Scheper,et al.  Translation matters: protein synthesis defects in inherited disease , 2007, Nature Reviews Genetics.

[11]  S. Daiger,et al.  Perspective on genes and mutations causing retinitis pigmentosa. , 2007, Archives of ophthalmology.

[12]  S. Fox,et al.  Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis , 2008, BMC Cancer.

[13]  S. Daiger,et al.  Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosa , 2008, Molecular vision.

[14]  Justin C. Fay,et al.  Quantification of rare allelic variants from pooled genomic DNA , 2009, Nature Methods.

[15]  J. Pal,et al.  Role of 5′‐ and 3′‐untranslated regions of mRNAs in human diseases , 2009, Biology of the cell.

[16]  T. L. McGee,et al.  A single‐base substitution within an intronic repetitive element causes dominant retinitis pigmentosa with reduced penetrance , 2009, Human mutation.

[17]  Carl T Wittwer,et al.  High resolution melting analysis for gene scanning. , 2010, Methods.

[18]  Á. Carracedo,et al.  Identification of a novel mutation in the human PDE6A gene in autosomal recessive retinitis pigmentosa: homology with the nmf28/nmf28 mice model , 2010, Clinical genetics.

[19]  C. Ayuso,et al.  Comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning in the ABCA4 gene. , 2010, Investigative ophthalmology & visual science.

[20]  Francesco Vallania,et al.  High-throughput discovery of rare insertions and deletions in large cohorts. , 2010, Genome research.

[21]  P. Sergouniotis,et al.  A survey of DNA variation of C2ORF71 in probands with progressive autosomal recessive retinal degeneration and controls. , 2011, Investigative ophthalmology & visual science.

[22]  E. Lander Initial impact of the sequencing of the human genome , 2011, Nature.

[23]  Yang Li,et al.  Seven novel mutations in the long isoform of the USH2A gene in Chinese families with nonsyndromic retinitis pigmentosa and Usher syndrome Type II , 2011, Molecular vision.

[24]  P. Joly,et al.  Rapid and reliable β-globin gene cluster haplotyping of sickle cell disease patients by FRET Light Cycler and HRM assays. , 2011, Clinica chimica acta; international journal of clinical chemistry.

[25]  R. Fulton,et al.  Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. , 2011, Investigative ophthalmology & visual science.

[26]  S. Ferrari,et al.  Retinitis Pigmentosa: Genes and Disease Mechanisms , 2011, Current genomics.

[27]  Susie Chang,et al.  Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability , 2011, Current genomics.

[28]  H. Dollfus,et al.  Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies , 2011, Progress in Retinal and Eye Research.

[29]  R. Henrique,et al.  High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer , 2013, BMC Cancer.

[30]  K. Borgwardt,et al.  Accurate indel prediction using paired-end short reads , 2013, BMC Genomics.

[31]  J. Ruiz-Ederra,et al.  Current mutation discovery approaches in Retinitis Pigmentosa , 2012, Vision Research.

[32]  Jonathan E. Dickerson,et al.  A paradigm shift in the delivery of services for diagnosis of inherited retinal disease , 2012, Journal of Medical Genetics.

[33]  M. Cortón,et al.  Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa , 2012, Molecular vision.

[34]  Christian Gilissen,et al.  Next-generation genetic testing for retinitis pigmentosa , 2012, Human mutation.

[35]  A. Goate,et al.  Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer's disease Ibero-American cohort , 2012, Alzheimer's Research & Therapy.

[36]  Jan-Gowth Chang,et al.  High-resolution melting: applications in genetic disorders. , 2012, Clinica chimica acta; international journal of clinical chemistry.

[37]  Jennifer Williamson,et al.  Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families , 2012, PloS one.

[38]  Véronique Geoffroy,et al.  Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alström Syndromes , 2012, Journal of Medical Genetics.

[39]  T. Dallman,et al.  Performance comparison of benchtop high-throughput sequencing platforms , 2012, Nature Biotechnology.

[40]  Zhen Xuan Yeo,et al.  Improving Indel Detection Specificity of the Ion Torrent PGM Benchtop Sequencer , 2012, PloS one.

[41]  L. Bierut,et al.  Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. , 2012, Human molecular genetics.

[42]  P. Parham,et al.  16th IHIW : Review of HLA typing by NGS , 2013, International journal of immunogenetics.

[43]  J. Merlin,et al.  Analysis of PIK3CA exon 9 and 20 mutations in breast cancers using PCR-HRM and PCR-ARMS: correlation with clinicopathological criteria. , 2013, Oncology reports.

[44]  Fei Xu,et al.  Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. , 2013, Investigative ophthalmology & visual science.

[45]  T. Rosenberg,et al.  A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa - the NARP syndrome. , 2013, Gene.

[46]  S. Humphries,et al.  Mutation detection in Croatian patients with Familial Hypercholesterolemia , 2013, Annals of human genetics.

[47]  B. Li,et al.  Applications of the method of high resolution melting analysis for diagnosis of Leber's disease and the three primary mutation spectrum of LHON in the Han Chinese population. , 2013, Gene.

[48]  Pablo Pareja-Tobes,et al.  BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data , 2012, IWBBIO.

[49]  Philip Hugenholtz,et al.  Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data , 2013, PLoS Comput. Biol..

[50]  John Broxholme,et al.  Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease , 2012, European Journal of Human Genetics.

[51]  R. Pöyhönen Identification of disease causing mutations in early-onset neuropathies by exome sequencing , 2013 .

[52]  E. Zrenner,et al.  Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies , 2013, European Journal of Human Genetics.