Photocatalytic photosystem I/PEDOT composite films prepared by vapor-phase polymerization.

Photosystem I (PSI) achieves photo-induced charge separation with outstanding internal quantum efficiency and has been used to improve the performance of various photoelectrochemical systems. Herein, we describe a fast and versatile technique to assemble composite films containing PSI and a chosen intrinsically conductive polymer (ICP). A mixture of PSI and a Friedel-Crafts catalyst (FeCl3) is drop cast atop a substrate of choice. Contact with ICP monomer vapor at low temperature stimulates polymer growth throughout PSI films in minutes. We assess the effects of PSI loading on the rapid vapor-phase growth of poly(3,4-ethylenedioxythiophene) (PEDOT) within and above PSI multilayer films, and characterize the resulting film's thickness, electrochemical capacitance, and photocatalytic response. Composite films generate cathodic photocurrent when in contact with an aqueous redox electrolyte, confirming retention of the photocatalytic activity of the polymer-entrapped PSI multilayer assembly.

[1]  T. Kuang,et al.  Comparison of the effects of Triton X-100 treatment on the protein secondary structure of Photosystem I and Photosystem II studied by FT-IR spectroscopy , 2000 .

[2]  Mahdi Hejazi,et al.  Engineering of supramolecular photoactive protein architectures: the defined co-assembly of photosystem I and cytochrome c using a nanoscaled DNA-matrix. , 2016, Nanoscale.

[3]  O. Lenz,et al.  Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. , 2009, ACS nano.

[4]  K. Bolotin,et al.  Photosystem I on graphene as a highly transparent, photoactive electrode. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[5]  Engineering Photosystem I Complexes with Metal Oxide Binding Peptides for Bioelectronic Applications. , 2015, Bioconjugate chemistry.

[6]  Nathan Nelson,et al.  Structure and function of photosystems I and II. , 2006, Annual review of plant biology.

[7]  R. Larson,et al.  Marangoni effect reverses coffee-ring depositions. , 2006, The journal of physical chemistry. B.

[8]  F. Goñi,et al.  Structure and dynamics of membrane proteins as studied by infrared spectroscopy. , 1999, Progress in biophysics and molecular biology.

[9]  David E Cliffel,et al.  Rapid assembly of photosystem I monolayers on gold electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[11]  E. Frąckowiak,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites , 2004 .

[12]  D. Cliffel,et al.  Integration of Photosystem I with Graphene Oxide for Photocurrent Enhancement , 2014 .

[13]  G. Kane Jennings,et al.  Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion , 2015 .

[14]  David E Cliffel,et al.  Enhanced Photocurrents of Photosystem I Films on p‐Doped Silicon , 2012, Advanced materials.

[15]  W. Schuhmann,et al.  Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels , 2011 .

[16]  Sung Gap Im,et al.  Systematic control of the electrical conductivity of poly(3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition , 2007 .

[17]  S. Radhakrishnan,et al.  Application of dip-coating process for depositing conducting polypyrrole films , 1997 .

[18]  Michael L Heien,et al.  Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. , 2015, Analytical chemistry.

[19]  S. Kirchmeyer,et al.  Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) , 2005 .

[20]  G. Wallace,et al.  Vapor-phase polymerization of pyrrole and thiophene using iron (III) sulfonates as oxidizing agents , 2004 .

[21]  B. Kê,et al.  Difference spectra and extinction coefficients of P 700 . , 1972, Biochimica et biophysica acta.

[22]  K. Baba,et al.  Photoinhibition of Photosystem I electron transfer activity in isolated Photosystem I preparations with different chlorophyll contents , 1996, Photosynthesis Research.

[23]  Linker-free deposition and adhesion of Photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  D. Cliffel,et al.  Effect of Cross-linking on the Performance and Stability of Photocatalytic Photosystem I Films , 2016 .

[25]  W. Schuhmann,et al.  Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis. , 2014, Chemistry.

[26]  K. Gleason,et al.  Single-Step Oxidative Chemical Vapor Deposition of −COOH Functional Conducting Copolymer and Immobilization of Biomolecule for Sensor Application , 2011 .

[27]  D. Cliffel,et al.  Effect of Redox Mediator on the Photo-Induced Current of a Photosystem I Modified Electrode , 2013 .

[28]  Fang Huang,et al.  Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film , 2015, Scientific Reports.

[29]  S. Nejati,et al.  Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[30]  Mahdi Hejazi,et al.  Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[31]  David E Cliffel,et al.  Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. , 2008, ACS nano.

[32]  A. Varesano,et al.  Vapour phase polymerisation of pyrrole on cellulose-based textile substrates , 2006 .

[33]  Manrico Fabretto,et al.  Improved PEDOT Conductivity via Suppression of Crystallite Formation in Fe(III) Tosylate During Vapor Phase Polymerization , 2008 .

[34]  O. Inganäs,et al.  Poly(3,4‐ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors , 1997 .

[35]  A. Ivaska,et al.  Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions , 2000 .

[36]  Roberta Croce,et al.  Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves[W][OA] , 2012, Plant Cell.

[37]  David E Cliffel,et al.  Entrapment of photosystem I within self-assembled films. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  A. Fink,et al.  Fourier transform infrared spectroscopy in analysis of protein deposits. , 1999, Methods in enzymology.

[39]  J. Bobacka,et al.  Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. , 1999, Analytical chemistry.

[40]  O. Inganäs,et al.  A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage , 2014 .

[41]  D. Cliffel,et al.  Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion. , 2015, ACS applied materials & interfaces.

[42]  Derek J. Fray,et al.  Achieving high electrode specific capacitance with materials of low mass specific capacitance : Potentiostatically grown thick micro-nanoporous PEDOT films , 2007 .

[43]  Michelle K. Leach,et al.  A facile approach for the fabrication of core-shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility. , 2013, Journal of materials chemistry. B.

[44]  Peter N. Ciesielski,et al.  Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies , 2010 .

[45]  Qi Chen,et al.  Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting. , 2013, Nanoscale.

[46]  Dhiman Bhattacharyya,et al.  Vapor phase oxidative synthesis of conjugated polymers and applications , 2012 .

[47]  P. Hammond,et al.  Grafted Conducting Polymer Films for Nano‐patterning onto Various Organic and Inorganic Substrates by Oxidative Chemical Vapor Deposition , 2007 .

[48]  D. Cliffel,et al.  Photoreduction of catalytic platinum particles using immobilized multilayers of Photosystem I. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[49]  Kevin J. Emmett,et al.  Photosystem I - based biohybrid photoelectrochemical cells. , 2010, Bioresource technology.

[50]  H. Sirringhaus,et al.  All‐Inkjet‐Printed, All‐Air‐Processed Solar Cells , 2014 .

[51]  Nathan Nelson,et al.  The structure of a plant photosystem I supercomplex at 3.4 Å resolution , 2007, Nature.

[52]  P. Kovacic,et al.  Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene) , 1987 .

[53]  G. Malliaras,et al.  PEDOT:gelatin composites mediate brain endothelial cell adhesion. , 2013, Journal of materials chemistry. B.

[54]  J. Jang,et al.  Polyaniline micropattern onto flexible substrate by vapor deposition polymerization-mediated inkjet printing , 2010 .

[55]  Shuguang Zhang,et al.  Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO , 2012, Scientific Reports.

[56]  M. Sheves,et al.  Electronic Transport via Proteins , 2014, Advanced materials.

[57]  R. S. Alberte,et al.  The P700-chlorophyll a-protein. Isolation and some characteristics of the complex in higher plants. , 1974, Archives of biochemistry and biophysics.