NMR studies of structure and function of biological macromolecules (Nobel Lecture)*

[1]  Timothy F. Havel,et al.  An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. , 1985, Journal of molecular biology.

[2]  Timothy F. Havel,et al.  Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. , 1985, Journal of molecular biology.

[3]  K Wüthrich,et al.  Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. , 1982, Journal of molecular biology.

[4]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[5]  H. Berendsen,et al.  Proton magnetic relaxation and spin diffusion in proteins , 1976 .

[6]  M. Karplus,et al.  Electronic structure of cyanide complexes of hemes and heme proteins. , 1971, Journal of molecular biology.

[7]  M. Billeter,et al.  Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein: Use of 3JHNα for identification of helical secondary structure , 1984 .

[8]  K Wüthrich,et al.  Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. , 1984, Journal of molecular biology.

[9]  H. Wyssbrod,et al.  Homonuclear indor spectroscopy as a means of simplifying and analyzing proton magnetic resonance spectra of peptides and as a basis for determining secondary and tertiary conformations of complex peptides. , 1972, Biochemistry.

[10]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[11]  A. Redfield,et al.  Double Nuclear Magnetic Resonance Observation of Electron Exchange between Ferri- and Ferrocytochrome c , 1970, Science.

[12]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[13]  Timothy F. Havel,et al.  A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular1H−1H proximities in solution , 1984 .

[14]  Kurt Wüthrich,et al.  Systematic application of two-dimensional 1H nuclear-magnetic-resonance techniques for studies of proteins. 2. Combined use of correlated spectroscopy and nuclear Overhauser spectroscopy for sequential assignments of backbone resonances and elucidation of polypeptide secondary structures. , 1981, European journal of biochemistry.

[15]  K. Wüthrich,et al.  Evolutionary change of the heme c electronic structure: ferricytochrome c-551 from Pseudomonas aeruginosa and horse heart ferricytochrome c. , 1978, Biochemical and biophysical research communications.

[16]  M. Saunders,et al.  NUCLEAR MAGNETIC RESONANCE SPECTRA OF PROTEINS , 1958 .

[17]  J. Dadok,et al.  Negative nuclear Overhauser effects as probes of macromolecular structure. , 1972, Journal of the American Chemical Society.

[18]  W. J. Gehring,et al.  The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: Comparison with prokaryotic repressors , 1989, Cell.

[19]  Kurt Wüthrich,et al.  NMR analysis of a 900K GroEL–GroES complex , 2002, Nature.

[20]  G. Wider Technical aspects of NMR Spectroscopy with biological macromolecules and studies of hydration in solution , 1998 .

[21]  Ad Bax,et al.  Methodological advances in protein NMR , 1993 .

[22]  Kurt Wüthrich,et al.  NMR in structural biology: a collection of papers by Kurt Wuthrich , 1995 .

[23]  D. G. Davis,et al.  Nuclear magnetic resonance studies of hemoglobins. VI. Heme proton spectra of human deoxyhemoglobins and their relevance to the nature of co-operative oxygenation of hemoglobin. , 1971, Journal of molecular biology.

[24]  D. G. Davis,et al.  Paramagnetic proton nuclear magnetic resonance shifts of metmyoglobin, methemoglobin, and hemin derivatives. , 1968, Journal of the American Chemical Society.

[25]  K. Wüthrich,et al.  The absence of "heme-heme" interactions in hemoglobin. , 1969, Science.

[26]  K Wüthrich,et al.  Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor. , 1982, Journal of molecular biology.

[27]  P. Güntert Structure calculation of biological macromolecules from NMR data , 1998, Quarterly Reviews of Biophysics.

[28]  A. Kowalsky Nuclear magnetic resonance studies of proteins. , 1962, The Journal of biological chemistry.

[29]  K Wüthrich,et al.  Protein hydration in aqueous solution. , 1991, Science.

[30]  O. Jardetzky,et al.  Proton magnetic resonance spectra of amino acids. , 1958, The Journal of biological chemistry.

[31]  Kurt Wüthrich,et al.  NMR in biological research: Peptides and proteins , 1976 .

[32]  M. Mandel PROTON MAGNETIC RESONANCE SPECTRA OF SOME PROTEINS. I. RIBONUCLEASE, OXIDIZED RIBONUCLEASE, LYSOZYME, AND CYTOCHROME C. , 1965, The Journal of biological chemistry.

[33]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[34]  K. Wüthrich,et al.  Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions , 1990, Quarterly Reviews of Biophysics.

[35]  W. D. Phillips,et al.  Manifestations of the tertiary structures of proteins in high-frequency nuclear magnetic resonance. , 1967, Journal of the American Chemical Society.

[36]  K. Wüthrich,et al.  Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli , 2001, FEBS letters.

[37]  K Wüthrich,et al.  Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. , 1982, Journal of molecular biology.

[38]  A. Dubs,et al.  Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. , 1979, Biochimica et biophysica acta.

[39]  K. Wuethrich,et al.  Transient proton-proton Overhauser effects in horse ferrocytochrome c , 1978 .

[40]  Kurt Wüthrich,et al.  Homonuclear two-dimensional 1H NMR of proteins. Experimental procedures , 1984 .

[41]  K. Wüthrich,et al.  NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor , 1975, FEBS letters.

[42]  J. H. Noggle The nuclear Overhauser effect , 1971 .

[43]  N Go,et al.  Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. , 1981, Biochimica et biophysica acta.

[44]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[45]  K. Wüthrich,et al.  Truncated driven nuclear overhauser effect (TOE). A new technique for studies of selective 1H1H overhauser effects in the presence of spin diffusion , 1979 .